Shilpa Suresh , Ragesh Rajan M. , Asha C.S. , Fabio Dell’Acqua
{"title":"RDC-UNet++:用于多光谱卫星图像增强的端到端网络","authors":"Shilpa Suresh , Ragesh Rajan M. , Asha C.S. , Fabio Dell’Acqua","doi":"10.1016/j.rsase.2024.101293","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-spectral satellite imagery is an ideal data source for comprehensive, real-time Earth observation (EO) due to its extensive coverage of Earth and regular updates. It has a wide range of applications in environment monitoring, disaster management, urban planning, weather forecasting etc. Yet, the visual aspect of these images and thus the possibility to extract useful information using image processing techniques is often degraded due to fog, rain, dust, cloud, etc. Satellite image enhancement denotes a set of techniques designed to improve the quality of a satellite image such that the result is more useful for image analysis. The image enhancement aims to improve the quality of an image such that the enhanced image is more useful for image analysis than the original image for a particular remote sensing application. This study introduces a multi-spectral satellite image enhancement architecture called Residual Dense Connection-based UNet++ (RDC-UNet++). The unique design can improve multi-spectral images by enhancing their color and texture details. Extensive experimental studies on multi-spectral image datasets containing more than 150 images prove that the proposed architecture performs better than recent state-of-the-art satellite image enhancement algorithms.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101293"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352938524001575/pdfft?md5=252297efb6b71ee5ace801a56f2e2120&pid=1-s2.0-S2352938524001575-main.pdf","citationCount":"0","resultStr":"{\"title\":\"RDC-UNet++: An end-to-end network for multispectral satellite image enhancement\",\"authors\":\"Shilpa Suresh , Ragesh Rajan M. , Asha C.S. , Fabio Dell’Acqua\",\"doi\":\"10.1016/j.rsase.2024.101293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-spectral satellite imagery is an ideal data source for comprehensive, real-time Earth observation (EO) due to its extensive coverage of Earth and regular updates. It has a wide range of applications in environment monitoring, disaster management, urban planning, weather forecasting etc. Yet, the visual aspect of these images and thus the possibility to extract useful information using image processing techniques is often degraded due to fog, rain, dust, cloud, etc. Satellite image enhancement denotes a set of techniques designed to improve the quality of a satellite image such that the result is more useful for image analysis. The image enhancement aims to improve the quality of an image such that the enhanced image is more useful for image analysis than the original image for a particular remote sensing application. This study introduces a multi-spectral satellite image enhancement architecture called Residual Dense Connection-based UNet++ (RDC-UNet++). The unique design can improve multi-spectral images by enhancing their color and texture details. Extensive experimental studies on multi-spectral image datasets containing more than 150 images prove that the proposed architecture performs better than recent state-of-the-art satellite image enhancement algorithms.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101293\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352938524001575/pdfft?md5=252297efb6b71ee5ace801a56f2e2120&pid=1-s2.0-S2352938524001575-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524001575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524001575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
RDC-UNet++: An end-to-end network for multispectral satellite image enhancement
Multi-spectral satellite imagery is an ideal data source for comprehensive, real-time Earth observation (EO) due to its extensive coverage of Earth and regular updates. It has a wide range of applications in environment monitoring, disaster management, urban planning, weather forecasting etc. Yet, the visual aspect of these images and thus the possibility to extract useful information using image processing techniques is often degraded due to fog, rain, dust, cloud, etc. Satellite image enhancement denotes a set of techniques designed to improve the quality of a satellite image such that the result is more useful for image analysis. The image enhancement aims to improve the quality of an image such that the enhanced image is more useful for image analysis than the original image for a particular remote sensing application. This study introduces a multi-spectral satellite image enhancement architecture called Residual Dense Connection-based UNet++ (RDC-UNet++). The unique design can improve multi-spectral images by enhancing their color and texture details. Extensive experimental studies on multi-spectral image datasets containing more than 150 images prove that the proposed architecture performs better than recent state-of-the-art satellite image enhancement algorithms.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems