{"title":"基于机器学习的海洋拉格朗日粒子聚类:拉布拉多洋流主要路径的识别","authors":"M. Jutras, N. Planat, C. O. Dufour, L. C. Talbot","doi":"10.1029/2023MS003902","DOIUrl":null,"url":null,"abstract":"<p>Modeled geospatial Lagrangian trajectories are widely used in Earth Science, including in oceanography, atmospheric science and marine biology. The typically large size of these data sets makes them arduous to analyze, and their underlying pathways challenging to identify. Here, we show that we can use a machine learning unsupervised k-means++ clustering method combined with expert aggregation of clusters to identify the pathways of the Labrador Current from a large set of modeled Lagrangian trajectories. The presented method requires simple pre-processing of the data, including a Cartesian correction on longitudes and a principal component analysis reduction. The clustering is performed in a kernelized space and uses a larger number of clusters than the number of expected pathways. To identify the main pathways, similar clusters are grouped into pathway categories by experts in the circulation of the region of interest. We find that the Labrador Current mainly follows a westward-flowing and an eastward retroflecting pathway (20% and 50% of the flow, respectively) that compensate each other through time in a see-saw behavior. These pathways experience a strong variability (representing through time 4%–42% and 24%–73% of the flow, respectively). Two thirds of the retroflection occurs at the tip of the Grand Banks, and one quarter at Flemish Cap. The westward pathway is mostly fed by the on-shelf branch of the Labrador Current, and the eastward pathway by the shelf-break branch. Among the pathways of secondary importance, we identify a previously unreported one that feeds the subtropics across the Gulf Stream.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003902","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Clustering of Oceanic Lagrangian Particles: Identification of the Main Pathways of the Labrador Current\",\"authors\":\"M. Jutras, N. Planat, C. O. Dufour, L. C. Talbot\",\"doi\":\"10.1029/2023MS003902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modeled geospatial Lagrangian trajectories are widely used in Earth Science, including in oceanography, atmospheric science and marine biology. The typically large size of these data sets makes them arduous to analyze, and their underlying pathways challenging to identify. Here, we show that we can use a machine learning unsupervised k-means++ clustering method combined with expert aggregation of clusters to identify the pathways of the Labrador Current from a large set of modeled Lagrangian trajectories. The presented method requires simple pre-processing of the data, including a Cartesian correction on longitudes and a principal component analysis reduction. The clustering is performed in a kernelized space and uses a larger number of clusters than the number of expected pathways. To identify the main pathways, similar clusters are grouped into pathway categories by experts in the circulation of the region of interest. We find that the Labrador Current mainly follows a westward-flowing and an eastward retroflecting pathway (20% and 50% of the flow, respectively) that compensate each other through time in a see-saw behavior. These pathways experience a strong variability (representing through time 4%–42% and 24%–73% of the flow, respectively). Two thirds of the retroflection occurs at the tip of the Grand Banks, and one quarter at Flemish Cap. The westward pathway is mostly fed by the on-shelf branch of the Labrador Current, and the eastward pathway by the shelf-break branch. Among the pathways of secondary importance, we identify a previously unreported one that feeds the subtropics across the Gulf Stream.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003902\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003902\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003902","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Machine Learning-Based Clustering of Oceanic Lagrangian Particles: Identification of the Main Pathways of the Labrador Current
Modeled geospatial Lagrangian trajectories are widely used in Earth Science, including in oceanography, atmospheric science and marine biology. The typically large size of these data sets makes them arduous to analyze, and their underlying pathways challenging to identify. Here, we show that we can use a machine learning unsupervised k-means++ clustering method combined with expert aggregation of clusters to identify the pathways of the Labrador Current from a large set of modeled Lagrangian trajectories. The presented method requires simple pre-processing of the data, including a Cartesian correction on longitudes and a principal component analysis reduction. The clustering is performed in a kernelized space and uses a larger number of clusters than the number of expected pathways. To identify the main pathways, similar clusters are grouped into pathway categories by experts in the circulation of the region of interest. We find that the Labrador Current mainly follows a westward-flowing and an eastward retroflecting pathway (20% and 50% of the flow, respectively) that compensate each other through time in a see-saw behavior. These pathways experience a strong variability (representing through time 4%–42% and 24%–73% of the flow, respectively). Two thirds of the retroflection occurs at the tip of the Grand Banks, and one quarter at Flemish Cap. The westward pathway is mostly fed by the on-shelf branch of the Labrador Current, and the eastward pathway by the shelf-break branch. Among the pathways of secondary importance, we identify a previously unreported one that feeds the subtropics across the Gulf Stream.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.