José E Abrão, Eudes Gomes da Silva, Gilberto Rodrigues-Junior, Joaquim B S Mendes, Antonio Azevedo
{"title":"通过自旋电流探测拉什巴表面的自旋动量锁定","authors":"José E Abrão, Eudes Gomes da Silva, Gilberto Rodrigues-Junior, Joaquim B S Mendes, Antonio Azevedo","doi":"10.1021/acsami.4c06090","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we investigate the spin-momentum locking phenomenon on Rashba states of antimony (Sb) films. Utilizing spin pumping in conjunction with an external charge current, we uncover the topological properties of Sb surface states. Our key finding is the precise manipulation of the direction and magnitude of the charge current generated by the inverse Rashba-Edelstein effect. This control is achieved through the dynamic interaction between out-of-equilibrium pumped spins and spin-momentum-locked flowing spins, which are perpendicular to the charge current. Our results highlight Sb as a promising material for both fundamental and applied spintronics research. The studied Sb nanostructures demonstrate potential for the development of low-power logic gates operating with currents in the microampere range, paving the way for advanced spintronic applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"13162-13169"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the Spin-Momentum Locking on Rashba Surfaces via Spin Current.\",\"authors\":\"José E Abrão, Eudes Gomes da Silva, Gilberto Rodrigues-Junior, Joaquim B S Mendes, Antonio Azevedo\",\"doi\":\"10.1021/acsami.4c06090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we investigate the spin-momentum locking phenomenon on Rashba states of antimony (Sb) films. Utilizing spin pumping in conjunction with an external charge current, we uncover the topological properties of Sb surface states. Our key finding is the precise manipulation of the direction and magnitude of the charge current generated by the inverse Rashba-Edelstein effect. This control is achieved through the dynamic interaction between out-of-equilibrium pumped spins and spin-momentum-locked flowing spins, which are perpendicular to the charge current. Our results highlight Sb as a promising material for both fundamental and applied spintronics research. The studied Sb nanostructures demonstrate potential for the development of low-power logic gates operating with currents in the microampere range, paving the way for advanced spintronic applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"13162-13169\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c06090\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c06090","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Probing the Spin-Momentum Locking on Rashba Surfaces via Spin Current.
In this study, we investigate the spin-momentum locking phenomenon on Rashba states of antimony (Sb) films. Utilizing spin pumping in conjunction with an external charge current, we uncover the topological properties of Sb surface states. Our key finding is the precise manipulation of the direction and magnitude of the charge current generated by the inverse Rashba-Edelstein effect. This control is achieved through the dynamic interaction between out-of-equilibrium pumped spins and spin-momentum-locked flowing spins, which are perpendicular to the charge current. Our results highlight Sb as a promising material for both fundamental and applied spintronics research. The studied Sb nanostructures demonstrate potential for the development of low-power logic gates operating with currents in the microampere range, paving the way for advanced spintronic applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.