模块化探究式学期主题,将数据科学教育和生物信息学整合到蛋白质结构功能课程中。

IF 2.2 4区 生物学 Q3 MICROBIOLOGY Fems Microbiology Letters Pub Date : 2024-01-09 DOI:10.1093/femsle/fnae055
Zareen Amtul, Forough Firoozbakht, Iman Rezaeian, Arham A Aziz, Padmini Gehlaut
{"title":"模块化探究式学期主题,将数据科学教育和生物信息学整合到蛋白质结构功能课程中。","authors":"Zareen Amtul, Forough Firoozbakht, Iman Rezaeian, Arham A Aziz, Padmini Gehlaut","doi":"10.1093/femsle/fnae055","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With an exponential growth in biological data and computing power, familiarity with bioinformatics has become a demanding and popular skill set both in academia and industry. There is a need to increase students' competencies to be able to take on bioinformatic careers, to get them familiarized with scientific professions in data science and the academic training required to pursue them, in a field where demand outweighs the supply.</p><p><strong>Methods: </strong>Here we implemented a set of bioinformatic activities into a protein structure and function course of a graduate program. Concisely, students were given hands-on opportunities to explore the bioinformatics-based analyses of biomolecular data and structural biology via a semester-long case study structured as inquiry-based bioinformatics exercises. Towards the end of the term, the students also designed and presented an assignment project that allowed them to document the unknown protein that they identified using bioinformatic knowledge during the term.</p><p><strong>Results: </strong>The post-module survey responses and students' performances in the lab module imply that it furthered an in-depth knowledge of bioinformatics. Despite having not much prior knowledge of bioinformatics prior to taking this module students indicated positive feedback.</p><p><strong>Conclusion: </strong>The students got familiar with cross-indexed databases that interlink important data about proteins, enzymes as well as genes. The essential skillsets honed by this research-based bioinformatic pedagogical approach will empower students to be able to leverage this knowledge for their future endeavours in the bioinformatics field.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339600/pdf/","citationCount":"0","resultStr":"{\"title\":\"A modular inquiry-based semester theme that integrates data science education and bioinformatics in protein structure function courses.\",\"authors\":\"Zareen Amtul, Forough Firoozbakht, Iman Rezaeian, Arham A Aziz, Padmini Gehlaut\",\"doi\":\"10.1093/femsle/fnae055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>With an exponential growth in biological data and computing power, familiarity with bioinformatics has become a demanding and popular skill set both in academia and industry. There is a need to increase students' competencies to be able to take on bioinformatic careers, to get them familiarized with scientific professions in data science and the academic training required to pursue them, in a field where demand outweighs the supply.</p><p><strong>Methods: </strong>Here we implemented a set of bioinformatic activities into a protein structure and function course of a graduate program. Concisely, students were given hands-on opportunities to explore the bioinformatics-based analyses of biomolecular data and structural biology via a semester-long case study structured as inquiry-based bioinformatics exercises. Towards the end of the term, the students also designed and presented an assignment project that allowed them to document the unknown protein that they identified using bioinformatic knowledge during the term.</p><p><strong>Results: </strong>The post-module survey responses and students' performances in the lab module imply that it furthered an in-depth knowledge of bioinformatics. Despite having not much prior knowledge of bioinformatics prior to taking this module students indicated positive feedback.</p><p><strong>Conclusion: </strong>The students got familiar with cross-indexed databases that interlink important data about proteins, enzymes as well as genes. The essential skillsets honed by this research-based bioinformatic pedagogical approach will empower students to be able to leverage this knowledge for their future endeavours in the bioinformatics field.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339600/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae055\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae055","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:随着生物数据和计算能力的指数级增长,熟悉生物信息学已成为学术界和产业界要求较高且受欢迎的技能。在这个供不应求的领域,有必要提高学生从事生物信息职业的能力,让他们熟悉数据科学领域的科学职业以及从事这些职业所需的学术培训。简而言之,通过一个学期的案例研究,学生们有机会亲手探索基于生物信息学的生物分子数据和结构生物学分析。在学期末,学生们还设计并展示了一个作业项目,让他们记录他们在学期中利用生物信息学知识识别出的未知蛋白质:模块结束后的调查反馈和学生在实验模块中的表现表明,该模块进一步加深了学生对生物信息学的了解。尽管在学习该模块之前,学生们对生物信息学并没有太多的了解,但他们都给予了积极的反馈:学生们熟悉了交叉索引数据库,这些数据库将有关蛋白质、酶和基因的重要数据联系在一起。这种以研究为基础的生物信息学教学方法所磨练出的基本技能将使学生能够在今后的生物信息学领域工作中充分利用这些知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A modular inquiry-based semester theme that integrates data science education and bioinformatics in protein structure function courses.

Background: With an exponential growth in biological data and computing power, familiarity with bioinformatics has become a demanding and popular skill set both in academia and industry. There is a need to increase students' competencies to be able to take on bioinformatic careers, to get them familiarized with scientific professions in data science and the academic training required to pursue them, in a field where demand outweighs the supply.

Methods: Here we implemented a set of bioinformatic activities into a protein structure and function course of a graduate program. Concisely, students were given hands-on opportunities to explore the bioinformatics-based analyses of biomolecular data and structural biology via a semester-long case study structured as inquiry-based bioinformatics exercises. Towards the end of the term, the students also designed and presented an assignment project that allowed them to document the unknown protein that they identified using bioinformatic knowledge during the term.

Results: The post-module survey responses and students' performances in the lab module imply that it furthered an in-depth knowledge of bioinformatics. Despite having not much prior knowledge of bioinformatics prior to taking this module students indicated positive feedback.

Conclusion: The students got familiar with cross-indexed databases that interlink important data about proteins, enzymes as well as genes. The essential skillsets honed by this research-based bioinformatic pedagogical approach will empower students to be able to leverage this knowledge for their future endeavours in the bioinformatics field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
期刊最新文献
Genomic insights into symbiosis and host adaptation of sponge-associated novel bacterium, Rossellomorea orangium sp. nov. Salinirarus marinus gen. nov., sp. nov., Haloplanus salilacus sp. nov., Haloplanus pelagicus sp. nov., Haloplanus halophilus sp. nov., Haloplanus halobius sp. nov., halophilic archaea isolated from commercial coarse salts with potential as starter cultures for salt-fermented foods. Isolation and characterization of a multidrug-resistant Staphylococcus aureus infecting phage and its therapeutic use in mice Organization, Conservation, and Diversity of Biosynthetic Gene Clusters in Bacillus sp. BH32 and Its Closest Relatives in the Bacillus cereus Group Dynamic responses of Salmonella Typhimurium to re-exposure to sublethal ciprofloxacin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1