从孔隙网络建模角度看地质碳封存中的残余捕集动态

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS International Journal of Greenhouse Gas Control Pub Date : 2024-07-01 DOI:10.1016/j.ijggc.2024.104200
Amin Amooie, Yanbin Gong, Mohammad Sedghi, Bradley McCaskill, Mohammad Piri
{"title":"从孔隙网络建模角度看地质碳封存中的残余捕集动态","authors":"Amin Amooie,&nbsp;Yanbin Gong,&nbsp;Mohammad Sedghi,&nbsp;Bradley McCaskill,&nbsp;Mohammad Piri","doi":"10.1016/j.ijggc.2024.104200","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the application of an efficient and robust Dynamic Pore-Network Modeling (DPNM) framework for accurate prediction of carbon dioxide (CO<sub>2</sub>) trapping behavior under the dynamic flow conditions prevalent in subsurface applications. Residual trapping of CO<sub>2</sub> is crucial in the context of geological sequestration, serving as a constitutive relationship that controls relative permeability hysteresis and thereby determining the magnitude of CO<sub>2</sub> trapping within formations over varying timescales. Utilizing our DPNM framework, we study the complexities of residual trapping in miniature-core-sized digital replicate of a sandstone. We systematically conduct series of two-phase flow simulations to examine the relationships between total residual CO<sub>2</sub> amount, trapping efficiency, and initial saturations across a spectrum of capillary numbers and wettability states. Dynamic simulation results lead to a simple power-law scaling equation correlating CO<sub>2</sub> trapping efficiency with initial saturation across various capillary numbers. Further analysis explores the morphological and topological characteristics of fluids during primary drainage and various imbibition displacements within the pore network. This work contributes an essential tool and deepens our understanding of CO<sub>2</sub> trapping dynamics, driving progress towards more effective and safer strategies for carbon capture and storage.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"136 ","pages":"Article 104200"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pore-network modeling perspective on the dynamics of residual trapping in geological carbon storage\",\"authors\":\"Amin Amooie,&nbsp;Yanbin Gong,&nbsp;Mohammad Sedghi,&nbsp;Bradley McCaskill,&nbsp;Mohammad Piri\",\"doi\":\"10.1016/j.ijggc.2024.104200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the application of an efficient and robust Dynamic Pore-Network Modeling (DPNM) framework for accurate prediction of carbon dioxide (CO<sub>2</sub>) trapping behavior under the dynamic flow conditions prevalent in subsurface applications. Residual trapping of CO<sub>2</sub> is crucial in the context of geological sequestration, serving as a constitutive relationship that controls relative permeability hysteresis and thereby determining the magnitude of CO<sub>2</sub> trapping within formations over varying timescales. Utilizing our DPNM framework, we study the complexities of residual trapping in miniature-core-sized digital replicate of a sandstone. We systematically conduct series of two-phase flow simulations to examine the relationships between total residual CO<sub>2</sub> amount, trapping efficiency, and initial saturations across a spectrum of capillary numbers and wettability states. Dynamic simulation results lead to a simple power-law scaling equation correlating CO<sub>2</sub> trapping efficiency with initial saturation across various capillary numbers. Further analysis explores the morphological and topological characteristics of fluids during primary drainage and various imbibition displacements within the pore network. This work contributes an essential tool and deepens our understanding of CO<sub>2</sub> trapping dynamics, driving progress towards more effective and safer strategies for carbon capture and storage.</p></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"136 \",\"pages\":\"Article 104200\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583624001439\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624001439","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了如何应用高效稳健的动态孔隙网络建模(DPNM)框架,准确预测地下应用中普遍存在的动态流动条件下的二氧化碳(CO2)捕集行为。二氧化碳的残留捕集在地质封存中至关重要,它是控制相对渗透滞后的构成关系,从而决定了不同时间尺度下地层中二氧化碳捕集的程度。利用我们的 DPNM 框架,我们研究了在微型岩芯大小的数字复制砂岩中残留捕集的复杂性。我们系统地进行了一系列两相流模拟,研究了毛细管数和润湿性状态下残留二氧化碳总量、捕集效率和初始饱和度之间的关系。动态模拟结果得出了一个简单的幂律比例方程,该方程将不同毛细管数下的二氧化碳捕集效率与初始饱和度联系起来。进一步的分析探讨了流体在一次排水过程中的形态和拓扑特征,以及孔隙网络中的各种浸润位移。这项工作提供了一个重要工具,加深了我们对二氧化碳捕集动力学的理解,推动了更有效、更安全的碳捕集与封存战略的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A pore-network modeling perspective on the dynamics of residual trapping in geological carbon storage

This study presents the application of an efficient and robust Dynamic Pore-Network Modeling (DPNM) framework for accurate prediction of carbon dioxide (CO2) trapping behavior under the dynamic flow conditions prevalent in subsurface applications. Residual trapping of CO2 is crucial in the context of geological sequestration, serving as a constitutive relationship that controls relative permeability hysteresis and thereby determining the magnitude of CO2 trapping within formations over varying timescales. Utilizing our DPNM framework, we study the complexities of residual trapping in miniature-core-sized digital replicate of a sandstone. We systematically conduct series of two-phase flow simulations to examine the relationships between total residual CO2 amount, trapping efficiency, and initial saturations across a spectrum of capillary numbers and wettability states. Dynamic simulation results lead to a simple power-law scaling equation correlating CO2 trapping efficiency with initial saturation across various capillary numbers. Further analysis explores the morphological and topological characteristics of fluids during primary drainage and various imbibition displacements within the pore network. This work contributes an essential tool and deepens our understanding of CO2 trapping dynamics, driving progress towards more effective and safer strategies for carbon capture and storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
期刊最新文献
Putting the genie back in the bottle: Decarbonizing petroleum with direct air capture and enhanced oil recovery A conceptual evaluation of the use of Ca(OH)2 for attaining carbon capture rates of 99% in the calcium looping process Determining the dominant factors controlling mineralization in three-dimensional fracture networks Conceptual design and evaluation of membrane gas separation-based CO2 recovery unit for CO2 electrolyzers employing anion exchange membranes Enhanced cation release via acid pretreatment for gigaton-scale geologic CO2 sequestration in basalt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1