工作场所与机器人有关的伤害:对 OSHA 严重伤害报告的分析

IF 3.1 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL Applied Ergonomics Pub Date : 2024-07-16 DOI:10.1016/j.apergo.2024.104324
Nathan E. Sanders , Elif Şener , Karen B. Chen
{"title":"工作场所与机器人有关的伤害:对 OSHA 严重伤害报告的分析","authors":"Nathan E. Sanders ,&nbsp;Elif Şener ,&nbsp;Karen B. Chen","doi":"10.1016/j.apergo.2024.104324","DOIUrl":null,"url":null,"abstract":"<div><p>Industrial robots are increasingly commonplace, but research on prototypical accidents and injuries has been sparse, hindering evidence-based safety strategies. Using Severe Injury Reports (SIRs) from the U.S. Occupational Safety and Health Administration (OSHA), we identified 77 robot-related accidents from 2015-2022. Of these, 54 involved stationary robots, resulting in 66 injuries, mainly finger amputations and fractures to the head and torso. Mobile robots caused 23 accidents, leading to 27 injuries, mainly fractures to the legs and feet. A two-stage deductive–inductive thematic analysis was performed using text data from the final narratives in the reports to discover patterns in tasks, precipitating mechanisms, and contributing factors. Findings highlight the need for guards and collision avoidance systems that detect individual extremities. Post-contact strategies should focus on mitigating finger amputations. More structured and detailed narratives in the SIRs are needed.</p></div>","PeriodicalId":55502,"journal":{"name":"Applied Ergonomics","volume":"121 ","pages":"Article 104324"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robot-related injuries in the workplace: An analysis of OSHA Severe Injury Reports\",\"authors\":\"Nathan E. Sanders ,&nbsp;Elif Şener ,&nbsp;Karen B. Chen\",\"doi\":\"10.1016/j.apergo.2024.104324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Industrial robots are increasingly commonplace, but research on prototypical accidents and injuries has been sparse, hindering evidence-based safety strategies. Using Severe Injury Reports (SIRs) from the U.S. Occupational Safety and Health Administration (OSHA), we identified 77 robot-related accidents from 2015-2022. Of these, 54 involved stationary robots, resulting in 66 injuries, mainly finger amputations and fractures to the head and torso. Mobile robots caused 23 accidents, leading to 27 injuries, mainly fractures to the legs and feet. A two-stage deductive–inductive thematic analysis was performed using text data from the final narratives in the reports to discover patterns in tasks, precipitating mechanisms, and contributing factors. Findings highlight the need for guards and collision avoidance systems that detect individual extremities. Post-contact strategies should focus on mitigating finger amputations. More structured and detailed narratives in the SIRs are needed.</p></div>\",\"PeriodicalId\":55502,\"journal\":{\"name\":\"Applied Ergonomics\",\"volume\":\"121 \",\"pages\":\"Article 104324\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003687024001017\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003687024001017","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

工业机器人越来越普遍,但有关原型事故和伤害的研究却很少,这阻碍了循证安全战略的实施。利用美国职业安全与健康管理局(OSHA)的严重伤害报告(SIR),我们确定了 2015-2022 年间 77 起与机器人相关的事故。其中,54 起涉及固定式机器人,造成 66 人受伤,主要是手指截肢以及头部和躯干骨折。移动机器人造成 23 起事故,导致 27 人受伤,主要是腿部和脚部骨折。我们利用报告中最后叙述的文本数据,进行了演绎-归纳两阶段的主题分析,以发现任务模式、诱发机制和促成因素。研究结果突出表明,需要能检测到个人四肢的防护装置和防撞系统。接触后策略应侧重于减少手指截肢。需要在 SIR 中进行更有条理和更详细的叙述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robot-related injuries in the workplace: An analysis of OSHA Severe Injury Reports

Industrial robots are increasingly commonplace, but research on prototypical accidents and injuries has been sparse, hindering evidence-based safety strategies. Using Severe Injury Reports (SIRs) from the U.S. Occupational Safety and Health Administration (OSHA), we identified 77 robot-related accidents from 2015-2022. Of these, 54 involved stationary robots, resulting in 66 injuries, mainly finger amputations and fractures to the head and torso. Mobile robots caused 23 accidents, leading to 27 injuries, mainly fractures to the legs and feet. A two-stage deductive–inductive thematic analysis was performed using text data from the final narratives in the reports to discover patterns in tasks, precipitating mechanisms, and contributing factors. Findings highlight the need for guards and collision avoidance systems that detect individual extremities. Post-contact strategies should focus on mitigating finger amputations. More structured and detailed narratives in the SIRs are needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Ergonomics
Applied Ergonomics 工程技术-工程:工业
CiteScore
7.50
自引率
9.40%
发文量
248
审稿时长
53 days
期刊介绍: Applied Ergonomics is aimed at ergonomists and all those interested in applying ergonomics/human factors in the design, planning and management of technical and social systems at work or leisure. Readership is truly international with subscribers in over 50 countries. Professionals for whom Applied Ergonomics is of interest include: ergonomists, designers, industrial engineers, health and safety specialists, systems engineers, design engineers, organizational psychologists, occupational health specialists and human-computer interaction specialists.
期刊最新文献
Assessing operator stress in collaborative robotics: A multimodal approach Corrigendum to "Gender, sex and desk-based postural behaviour: A systematic review re-interpreting biomechanical evidence from a social perspective" [Appl. Ergon. 114 (2023) 104073]. Takeover and non-driving related task performance in conditional automated driving: EEG and behavior Parameters interaction Editorial Board Effect of a back-support exoskeleton on internal forces and lumbar spine stability during low load lifting task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1