用于投资组合选择的深度强化学习

IF 5.5 2区 经济学 Q1 BUSINESS, FINANCE Global Finance Journal Pub Date : 2024-07-14 DOI:10.1016/j.gfj.2024.101016
Yifu Jiang , Jose Olmo , Majed Atwi
{"title":"用于投资组合选择的深度强化学习","authors":"Yifu Jiang ,&nbsp;Jose Olmo ,&nbsp;Majed Atwi","doi":"10.1016/j.gfj.2024.101016","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes an advanced model-free deep reinforcement learning (DRL) framework to construct optimal portfolio strategies in dynamic, complex, and large-dimensional financial markets. Investors' risk aversion and transaction cost constraints are embedded in an extended Markowitz's mean-variance reward function by employing a twin-delayed deep deterministic policy gradient (TD3) algorithm. This study designs a DRL-TD3-based risk and transaction cost-sensitive portfolio that combines advanced exploration strategies and dynamic policy updates. The proposed portfolio method effectively addresses the challenges posed by high-dimensional state and action spaces in complex financial markets. This methodology provides two optimal portfolios by flexibly controlling transaction and risk costs with (i) the constituents of the Dow Jones Industrial Average and (ii) the constituents of the S&amp;P100 index. Results demonstrate a strong portfolio performance of the proposed DRL portfolio compared to those of several competitors from the traditional and DRL literatures.</p></div>","PeriodicalId":46907,"journal":{"name":"Global Finance Journal","volume":"62 ","pages":"Article 101016"},"PeriodicalIF":5.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1044028324000887/pdfft?md5=1e104ca35ccd1fee383f1ec3c00e3882&pid=1-s2.0-S1044028324000887-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep reinforcement learning for portfolio selection\",\"authors\":\"Yifu Jiang ,&nbsp;Jose Olmo ,&nbsp;Majed Atwi\",\"doi\":\"10.1016/j.gfj.2024.101016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes an advanced model-free deep reinforcement learning (DRL) framework to construct optimal portfolio strategies in dynamic, complex, and large-dimensional financial markets. Investors' risk aversion and transaction cost constraints are embedded in an extended Markowitz's mean-variance reward function by employing a twin-delayed deep deterministic policy gradient (TD3) algorithm. This study designs a DRL-TD3-based risk and transaction cost-sensitive portfolio that combines advanced exploration strategies and dynamic policy updates. The proposed portfolio method effectively addresses the challenges posed by high-dimensional state and action spaces in complex financial markets. This methodology provides two optimal portfolios by flexibly controlling transaction and risk costs with (i) the constituents of the Dow Jones Industrial Average and (ii) the constituents of the S&amp;P100 index. Results demonstrate a strong portfolio performance of the proposed DRL portfolio compared to those of several competitors from the traditional and DRL literatures.</p></div>\",\"PeriodicalId\":46907,\"journal\":{\"name\":\"Global Finance Journal\",\"volume\":\"62 \",\"pages\":\"Article 101016\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1044028324000887/pdfft?md5=1e104ca35ccd1fee383f1ec3c00e3882&pid=1-s2.0-S1044028324000887-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Finance Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044028324000887\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Finance Journal","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044028324000887","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种先进的无模型深度强化学习(DRL)框架,用于构建动态、复杂和大维度金融市场中的最优投资组合策略。通过采用双延迟深度确定性策略梯度(TD3)算法,将投资者的风险规避和交易成本约束嵌入到扩展的马科维茨均值-方差报酬函数中。本研究设计了一种基于 DRL-TD3 的风险和交易成本敏感型投资组合,它结合了先进的探索策略和动态策略更新。所提出的投资组合方法能有效解决复杂金融市场中高维状态和行动空间带来的挑战。该方法通过灵活控制交易和风险成本,提供了两个最优投资组合:(i) 道琼斯工业平均指数成分股;(ii) S&P100 指数成分股。结果表明,与传统和 DRL 文献中的几个竞争对手相比,所提出的 DRL 投资组合具有很强的投资组合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep reinforcement learning for portfolio selection

This study proposes an advanced model-free deep reinforcement learning (DRL) framework to construct optimal portfolio strategies in dynamic, complex, and large-dimensional financial markets. Investors' risk aversion and transaction cost constraints are embedded in an extended Markowitz's mean-variance reward function by employing a twin-delayed deep deterministic policy gradient (TD3) algorithm. This study designs a DRL-TD3-based risk and transaction cost-sensitive portfolio that combines advanced exploration strategies and dynamic policy updates. The proposed portfolio method effectively addresses the challenges posed by high-dimensional state and action spaces in complex financial markets. This methodology provides two optimal portfolios by flexibly controlling transaction and risk costs with (i) the constituents of the Dow Jones Industrial Average and (ii) the constituents of the S&P100 index. Results demonstrate a strong portfolio performance of the proposed DRL portfolio compared to those of several competitors from the traditional and DRL literatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Finance Journal
Global Finance Journal BUSINESS, FINANCE-
CiteScore
7.30
自引率
13.50%
发文量
106
审稿时长
53 days
期刊介绍: Global Finance Journal provides a forum for the exchange of ideas and techniques among academicians and practitioners and, thereby, advances applied research in global financial management. Global Finance Journal publishes original, creative, scholarly research that integrates theory and practice and addresses a readership in both business and academia. Articles reflecting pragmatic research are sought in areas such as financial management, investment, banking and financial services, accounting, and taxation. Global Finance Journal welcomes contributions from scholars in both the business and academic community and encourages collaborative research from this broad base worldwide.
期刊最新文献
Editorial Board Pyramidal structure, vertical interlock, and corporate innovation Inhabiting influence of digital finance on stock price synchronicity Business group heterogeneity and firm outcomes: Evidence from Korean chaebols Under the microscope: Trade initiation activities around earnings and takeover announcements in a market with continuous disclosure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1