Murad G. K. Alabdullah;M. A. Elmessary;D. Nagy;N. Seoane;A. J. García-Loureiro;K. Kalna
{"title":"将纳米片场效应晶体管扩展到 2 纳米以下节点所面临的挑战","authors":"Murad G. K. Alabdullah;M. A. Elmessary;D. Nagy;N. Seoane;A. J. García-Loureiro;K. Kalna","doi":"10.1109/JEDS.2024.3416200","DOIUrl":null,"url":null,"abstract":"The scaling of nanosheet (NS) field effect transistors (FETs) from the 12 nm gate length to the ultimate gate length of 10 nm for sub-2 nm nodes brings additional technological challenges. Here, 3D finite element Monte Carlo simulations are employed to explore how to alter the NS architecture to increase the drive current (\n<inline-formula> <tex-math>${I}_{\\mathrm {\\mathbf { DD}}}$ </tex-math></inline-formula>\n) because the gate scaling to 10 nm results in a decline of the current (by \n<inline-formula> <tex-math>$\\mathbf {10.7}$ </tex-math></inline-formula>\n%). \n<inline-formula> <tex-math>${I}_{\\mathrm {\\mathbf {DD}}}$ </tex-math></inline-formula>\n of the 10 nm gate length NS FET will increase by 11% if the maximum n-type source/drain doping reaches \n<inline-formula> <tex-math>$1\\times 10^{20} \\mathrm {cm^{-3}}$ </tex-math></inline-formula>\n, or increase by \n<inline-formula> <tex-math>$\\mathbf {3.8}$ </tex-math></inline-formula>\n% if the high-\n<inline-formula> <tex-math>$\\kappa $ </tex-math></inline-formula>\n dielectric layer equivalent oxide thickness (EOT) is less than \n<inline-formula> <tex-math>$\\mathbf {1.0}$ </tex-math></inline-formula>\n nm. The reduction in the channel width below 40 nm or the reduction in the channel thickness below 5 nm will substantially decrease IDD. The sub-threshold figures of merit like the sub-threshold slope (SS) will decrease from 75 to 73 mV/dec, while the drain-induced barrier lowering (DIBL) will increase from 32 to 77 mV/V. Finally, the effect of strain to increase the drive current is strongly limited by quantum confinement. \n<inline-formula> <tex-math>${I}_{\\mathrm {\\mathbf {DD}}}$ </tex-math></inline-formula>\n will increase by 3% and by 14% in the 10 nm gate NS FET with the \n<inline-formula> <tex-math>$\\langle 110\\rangle $ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$\\langle 100\\rangle $ </tex-math></inline-formula>\n channel orientations, respectively, when a strain of \n<inline-formula> <tex-math>$\\mathbf {0.5}$ </tex-math></inline-formula>\n% is applied to the channel, with a negligible increase for larger strain values (\n<inline-formula> <tex-math>$\\mathbf {0.7}$ </tex-math></inline-formula>\n% and \n<inline-formula> <tex-math>$\\mathbf {1.0}$ </tex-math></inline-formula>\n%).","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561475","citationCount":"0","resultStr":"{\"title\":\"Scaling Challenges of Nanosheet Field-Effect Transistors Into Sub-2 nm Nodes\",\"authors\":\"Murad G. K. Alabdullah;M. A. Elmessary;D. Nagy;N. Seoane;A. J. García-Loureiro;K. Kalna\",\"doi\":\"10.1109/JEDS.2024.3416200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scaling of nanosheet (NS) field effect transistors (FETs) from the 12 nm gate length to the ultimate gate length of 10 nm for sub-2 nm nodes brings additional technological challenges. Here, 3D finite element Monte Carlo simulations are employed to explore how to alter the NS architecture to increase the drive current (\\n<inline-formula> <tex-math>${I}_{\\\\mathrm {\\\\mathbf { DD}}}$ </tex-math></inline-formula>\\n) because the gate scaling to 10 nm results in a decline of the current (by \\n<inline-formula> <tex-math>$\\\\mathbf {10.7}$ </tex-math></inline-formula>\\n%). \\n<inline-formula> <tex-math>${I}_{\\\\mathrm {\\\\mathbf {DD}}}$ </tex-math></inline-formula>\\n of the 10 nm gate length NS FET will increase by 11% if the maximum n-type source/drain doping reaches \\n<inline-formula> <tex-math>$1\\\\times 10^{20} \\\\mathrm {cm^{-3}}$ </tex-math></inline-formula>\\n, or increase by \\n<inline-formula> <tex-math>$\\\\mathbf {3.8}$ </tex-math></inline-formula>\\n% if the high-\\n<inline-formula> <tex-math>$\\\\kappa $ </tex-math></inline-formula>\\n dielectric layer equivalent oxide thickness (EOT) is less than \\n<inline-formula> <tex-math>$\\\\mathbf {1.0}$ </tex-math></inline-formula>\\n nm. The reduction in the channel width below 40 nm or the reduction in the channel thickness below 5 nm will substantially decrease IDD. The sub-threshold figures of merit like the sub-threshold slope (SS) will decrease from 75 to 73 mV/dec, while the drain-induced barrier lowering (DIBL) will increase from 32 to 77 mV/V. Finally, the effect of strain to increase the drive current is strongly limited by quantum confinement. \\n<inline-formula> <tex-math>${I}_{\\\\mathrm {\\\\mathbf {DD}}}$ </tex-math></inline-formula>\\n will increase by 3% and by 14% in the 10 nm gate NS FET with the \\n<inline-formula> <tex-math>$\\\\langle 110\\\\rangle $ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$\\\\langle 100\\\\rangle $ </tex-math></inline-formula>\\n channel orientations, respectively, when a strain of \\n<inline-formula> <tex-math>$\\\\mathbf {0.5}$ </tex-math></inline-formula>\\n% is applied to the channel, with a negligible increase for larger strain values (\\n<inline-formula> <tex-math>$\\\\mathbf {0.7}$ </tex-math></inline-formula>\\n% and \\n<inline-formula> <tex-math>$\\\\mathbf {1.0}$ </tex-math></inline-formula>\\n%).\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561475\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10561475/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10561475/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Scaling Challenges of Nanosheet Field-Effect Transistors Into Sub-2 nm Nodes
The scaling of nanosheet (NS) field effect transistors (FETs) from the 12 nm gate length to the ultimate gate length of 10 nm for sub-2 nm nodes brings additional technological challenges. Here, 3D finite element Monte Carlo simulations are employed to explore how to alter the NS architecture to increase the drive current (
${I}_{\mathrm {\mathbf { DD}}}$
) because the gate scaling to 10 nm results in a decline of the current (by
$\mathbf {10.7}$
%).
${I}_{\mathrm {\mathbf {DD}}}$
of the 10 nm gate length NS FET will increase by 11% if the maximum n-type source/drain doping reaches
$1\times 10^{20} \mathrm {cm^{-3}}$
, or increase by
$\mathbf {3.8}$
% if the high-
$\kappa $
dielectric layer equivalent oxide thickness (EOT) is less than
$\mathbf {1.0}$
nm. The reduction in the channel width below 40 nm or the reduction in the channel thickness below 5 nm will substantially decrease IDD. The sub-threshold figures of merit like the sub-threshold slope (SS) will decrease from 75 to 73 mV/dec, while the drain-induced barrier lowering (DIBL) will increase from 32 to 77 mV/V. Finally, the effect of strain to increase the drive current is strongly limited by quantum confinement.
${I}_{\mathrm {\mathbf {DD}}}$
will increase by 3% and by 14% in the 10 nm gate NS FET with the
$\langle 110\rangle $
and
$\langle 100\rangle $
channel orientations, respectively, when a strain of
$\mathbf {0.5}$
% is applied to the channel, with a negligible increase for larger strain values (
$\mathbf {0.7}$
% and
$\mathbf {1.0}$
%).