{"title":"基于贝叶斯方法和 NSGA-II 的场地勘测计划多目标优化框架","authors":"Yang Sun, Ziying Xu, Jinshan Sun, Zhen Chen","doi":"10.1002/nag.3806","DOIUrl":null,"url":null,"abstract":"<p>Site investigation provides essential geotechnical parameter information for analysis and design. However, three conflicting objectives, namely exploration effort, robustness and parameter uncertainty, pose a challenge to the development of an optimal site investigation program. In this study, a three objective optimization framework for the site investigation program is proposed based on the Bayesian approach and the non-dominated sorting genetic algorithm (NSGA-II). The only inputs required by the proposed framework are prior distribution of geotechnical parameters and error information. The prior distribution of geotechnical parameters is derived from integrating engineering experience and measurements from basic exploration boreholes. The error information is obtained based on literature and expert judgment related to the specific project. Firstly, a design pool of candidate investigation programs is generated using Bayesian approach to determine the locations and number of exploration boreholes. The NSGA-II is then applied to identify the optimal program that balances lower cost, higher robustness, and lower uncertainty. The proposed multiobjective optimization framework is illustrated and validated through a real site investigation case in Chongqing, China, aimed at determining the ultimate bearing capacity of the rock foundation. The spatial correlation of parameters within the study area is also considered. The optimal program is represented by the location and number of exploration boreholes. By comparing measurements with predictions from different site investigation programs, the efficiency of the proposed multiobjective framework is demonstrated. Additionally, the influence of engineering experience and random field modeling on the investigation program is discussed.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 14","pages":"3537-3560"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiobjective optimization framework for site investigation program based on Bayesian approach and NSGA-II\",\"authors\":\"Yang Sun, Ziying Xu, Jinshan Sun, Zhen Chen\",\"doi\":\"10.1002/nag.3806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Site investigation provides essential geotechnical parameter information for analysis and design. However, three conflicting objectives, namely exploration effort, robustness and parameter uncertainty, pose a challenge to the development of an optimal site investigation program. In this study, a three objective optimization framework for the site investigation program is proposed based on the Bayesian approach and the non-dominated sorting genetic algorithm (NSGA-II). The only inputs required by the proposed framework are prior distribution of geotechnical parameters and error information. The prior distribution of geotechnical parameters is derived from integrating engineering experience and measurements from basic exploration boreholes. The error information is obtained based on literature and expert judgment related to the specific project. Firstly, a design pool of candidate investigation programs is generated using Bayesian approach to determine the locations and number of exploration boreholes. The NSGA-II is then applied to identify the optimal program that balances lower cost, higher robustness, and lower uncertainty. The proposed multiobjective optimization framework is illustrated and validated through a real site investigation case in Chongqing, China, aimed at determining the ultimate bearing capacity of the rock foundation. The spatial correlation of parameters within the study area is also considered. The optimal program is represented by the location and number of exploration boreholes. By comparing measurements with predictions from different site investigation programs, the efficiency of the proposed multiobjective framework is demonstrated. Additionally, the influence of engineering experience and random field modeling on the investigation program is discussed.</p>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"48 14\",\"pages\":\"3537-3560\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3806\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3806","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A multiobjective optimization framework for site investigation program based on Bayesian approach and NSGA-II
Site investigation provides essential geotechnical parameter information for analysis and design. However, three conflicting objectives, namely exploration effort, robustness and parameter uncertainty, pose a challenge to the development of an optimal site investigation program. In this study, a three objective optimization framework for the site investigation program is proposed based on the Bayesian approach and the non-dominated sorting genetic algorithm (NSGA-II). The only inputs required by the proposed framework are prior distribution of geotechnical parameters and error information. The prior distribution of geotechnical parameters is derived from integrating engineering experience and measurements from basic exploration boreholes. The error information is obtained based on literature and expert judgment related to the specific project. Firstly, a design pool of candidate investigation programs is generated using Bayesian approach to determine the locations and number of exploration boreholes. The NSGA-II is then applied to identify the optimal program that balances lower cost, higher robustness, and lower uncertainty. The proposed multiobjective optimization framework is illustrated and validated through a real site investigation case in Chongqing, China, aimed at determining the ultimate bearing capacity of the rock foundation. The spatial correlation of parameters within the study area is also considered. The optimal program is represented by the location and number of exploration boreholes. By comparing measurements with predictions from different site investigation programs, the efficiency of the proposed multiobjective framework is demonstrated. Additionally, the influence of engineering experience and random field modeling on the investigation program is discussed.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.