中国上市公司的财务欺诈检测:管理者的反常语气重要吗?

IF 5.6 2区 经济学 Q1 BUSINESS, FINANCE Emerging Markets Review Pub Date : 2024-07-14 DOI:10.1016/j.ememar.2024.101170
Jingyu Li , Ce Guo , Sijia Lv , Qiwei Xie , Xiaolong Zheng
{"title":"中国上市公司的财务欺诈检测:管理者的反常语气重要吗?","authors":"Jingyu Li ,&nbsp;Ce Guo ,&nbsp;Sijia Lv ,&nbsp;Qiwei Xie ,&nbsp;Xiaolong Zheng","doi":"10.1016/j.ememar.2024.101170","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a novel perspective on financial fraud detection by exploring the utility of managers' abnormal tone. To mitigate bias in indicator selection, we implement a feature selection process involving a comprehensive set of 301 indicators, including financial, non-financial, and textual, and various machine learning algorithms. The dataset contains 6077 pairs of fraudulent and non-fraudulent samples in China. Our findings underscore the significance of abnormal tone in fraud detection, establishing it as a prominent factor in the feature selection process. The accuracy outcomes from eight machine learning models further confirm that incorporating abnormal tone can enhance fraud detection performance.</p></div>","PeriodicalId":47886,"journal":{"name":"Emerging Markets Review","volume":"62 ","pages":"Article 101170"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Financial fraud detection for Chinese listed firms: Does managers' abnormal tone matter?\",\"authors\":\"Jingyu Li ,&nbsp;Ce Guo ,&nbsp;Sijia Lv ,&nbsp;Qiwei Xie ,&nbsp;Xiaolong Zheng\",\"doi\":\"10.1016/j.ememar.2024.101170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces a novel perspective on financial fraud detection by exploring the utility of managers' abnormal tone. To mitigate bias in indicator selection, we implement a feature selection process involving a comprehensive set of 301 indicators, including financial, non-financial, and textual, and various machine learning algorithms. The dataset contains 6077 pairs of fraudulent and non-fraudulent samples in China. Our findings underscore the significance of abnormal tone in fraud detection, establishing it as a prominent factor in the feature selection process. The accuracy outcomes from eight machine learning models further confirm that incorporating abnormal tone can enhance fraud detection performance.</p></div>\",\"PeriodicalId\":47886,\"journal\":{\"name\":\"Emerging Markets Review\",\"volume\":\"62 \",\"pages\":\"Article 101170\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Markets Review\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566014124000657\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Markets Review","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566014124000657","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过探索管理者异常语气的效用,为财务欺诈检测引入了一个新的视角。为了减少指标选择中的偏差,我们实施了一个特征选择过程,该过程涉及一整套 301 个指标,包括财务、非财务和文本指标,以及各种机器学习算法。数据集包含中国 6077 对欺诈和非欺诈样本。我们的研究结果强调了异常语气在欺诈检测中的重要性,并将其确立为特征选择过程中的一个重要因素。八个机器学习模型的准确率结果进一步证实,加入异常语调可以提高欺诈检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Financial fraud detection for Chinese listed firms: Does managers' abnormal tone matter?

This study introduces a novel perspective on financial fraud detection by exploring the utility of managers' abnormal tone. To mitigate bias in indicator selection, we implement a feature selection process involving a comprehensive set of 301 indicators, including financial, non-financial, and textual, and various machine learning algorithms. The dataset contains 6077 pairs of fraudulent and non-fraudulent samples in China. Our findings underscore the significance of abnormal tone in fraud detection, establishing it as a prominent factor in the feature selection process. The accuracy outcomes from eight machine learning models further confirm that incorporating abnormal tone can enhance fraud detection performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
4.20%
发文量
85
审稿时长
100 days
期刊介绍: The intent of the editors is to consolidate Emerging Markets Review as the premier vehicle for publishing high impact empirical and theoretical studies in emerging markets finance. Preference will be given to comparative studies that take global and regional perspectives, detailed single country studies that address critical policy issues and have significant global and regional implications, and papers that address the interactions of national and international financial architecture. We especially welcome papers that take institutional as well as financial perspectives.
期刊最新文献
Editorial Board Does party organization embeddedness boost corporate environmental performance? (Un)risky commitments Perceived risks of financial misconduct and fintech in crowdfunding of Vietnamese individual investors Unintended consequences: Examining the effects of government digital regulation on corporate fintech innovation in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1