KLF2-BMPER-Smad1/5检查点调节高流体剪切应力介导的动脉重塑

IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Nature cardiovascular research Pub Date : 2024-07-08 DOI:10.1038/s44161-024-00496-y
Hanqiang Deng, Jiasheng Zhang, Yewei Wang, Divyesh Joshi, Xinchun Pi, Sarah De Val, Martin A. Schwartz
{"title":"KLF2-BMPER-Smad1/5检查点调节高流体剪切应力介导的动脉重塑","authors":"Hanqiang Deng, Jiasheng Zhang, Yewei Wang, Divyesh Joshi, Xinchun Pi, Sarah De Val, Martin A. Schwartz","doi":"10.1038/s44161-024-00496-y","DOIUrl":null,"url":null,"abstract":"Vascular remodeling to match arterial diameter to tissue requirements commonly fails in ischemic disease. Endothelial cells sense fluid shear stress (FSS) from blood flow to maintain FSS within a narrow range in healthy vessels. Thus, high FSS induces vessel outward remodeling, but mechanisms are poorly understood. We previously reported that Smad1/5 is maximally activated at physiological FSS. Smad1/5 limits Akt activation, suggesting that inhibiting Smad1/5 may facilitate outward remodeling. Here we report that high FSS suppresses Smad1/5 by elevating KLF2, which induces the bone morphogenetic protein (BMP) pathway inhibitor, BMP-binding endothelial regulator (BMPER), thereby de-inhibiting Akt. In mice, surgically induced high FSS elevated BMPER expression, inactivated Smad1/5 and induced vessel outward remodeling. Endothelial BMPER deletion impaired blood flow recovery and vascular remodeling. Blocking endothelial cell Smad1/5 activation with BMP9/10 blocking antibodies improved vascular remodeling in mouse models of type 1 and type 2 diabetes. Suppression of Smad1/5 is thus a potential therapeutic approach for ischemic disease. Deng et al. show that endothelial cells respond to high fluid shear stress by KLF2-mediated induction of the BMP–Smad1/5 pathway inhibitor BMPER, resulting in outward vessel remodeling, and apply this knowledge to develop an approach that improves vessel remodeling in mouse models of diabetes.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 7","pages":"785-798"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A KLF2-BMPER-Smad1/5 checkpoint regulates high fluid shear stress-mediated artery remodeling\",\"authors\":\"Hanqiang Deng, Jiasheng Zhang, Yewei Wang, Divyesh Joshi, Xinchun Pi, Sarah De Val, Martin A. Schwartz\",\"doi\":\"10.1038/s44161-024-00496-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vascular remodeling to match arterial diameter to tissue requirements commonly fails in ischemic disease. Endothelial cells sense fluid shear stress (FSS) from blood flow to maintain FSS within a narrow range in healthy vessels. Thus, high FSS induces vessel outward remodeling, but mechanisms are poorly understood. We previously reported that Smad1/5 is maximally activated at physiological FSS. Smad1/5 limits Akt activation, suggesting that inhibiting Smad1/5 may facilitate outward remodeling. Here we report that high FSS suppresses Smad1/5 by elevating KLF2, which induces the bone morphogenetic protein (BMP) pathway inhibitor, BMP-binding endothelial regulator (BMPER), thereby de-inhibiting Akt. In mice, surgically induced high FSS elevated BMPER expression, inactivated Smad1/5 and induced vessel outward remodeling. Endothelial BMPER deletion impaired blood flow recovery and vascular remodeling. Blocking endothelial cell Smad1/5 activation with BMP9/10 blocking antibodies improved vascular remodeling in mouse models of type 1 and type 2 diabetes. Suppression of Smad1/5 is thus a potential therapeutic approach for ischemic disease. Deng et al. show that endothelial cells respond to high fluid shear stress by KLF2-mediated induction of the BMP–Smad1/5 pathway inhibitor BMPER, resulting in outward vessel remodeling, and apply this knowledge to develop an approach that improves vessel remodeling in mouse models of diabetes.\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\"3 7\",\"pages\":\"785-798\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44161-024-00496-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-024-00496-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在缺血性疾病中,使动脉直径与组织要求相匹配的血管重塑通常会失败。内皮细胞能感知血流中的流体剪切应力(FSS),从而将健康血管中的FSS维持在一个狭窄的范围内。因此,高 FSS 会诱导血管向外重塑,但其机制尚不清楚。我们以前曾报道过,Smad1/5 在生理 FSS 时被最大限度地激活。Smad1/5 限制了 Akt 的激活,这表明抑制 Smad1/5 可能会促进血管向外重塑。在这里,我们报告了高 FSS 可通过提高 KLF2 抑制 Smad1/5,KLF2 可诱导骨形态发生蛋白(BMP)通路抑制剂 BMP 结合内皮调节因子(BMPER),从而抑制 Akt。在小鼠体内,手术诱导的高 FSS 会提高 BMPER 的表达,使 Smad1/5 失活,并诱导血管向外重塑。内皮 BMPER 缺失会损害血流恢复和血管重塑。用 BMP9/10 阻断抗体阻断内皮细胞 Smad1/5 的活化可改善 1 型和 2 型糖尿病小鼠模型的血管重塑。因此,抑制 Smad1/5 是治疗缺血性疾病的一种潜在方法。Deng 等人的研究表明,内皮细胞通过 KLF2 介导的 BMP-Smad1/5 通路抑制剂 BMPER 的诱导对高流体剪切应力做出反应,从而导致血管向外重塑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A KLF2-BMPER-Smad1/5 checkpoint regulates high fluid shear stress-mediated artery remodeling
Vascular remodeling to match arterial diameter to tissue requirements commonly fails in ischemic disease. Endothelial cells sense fluid shear stress (FSS) from blood flow to maintain FSS within a narrow range in healthy vessels. Thus, high FSS induces vessel outward remodeling, but mechanisms are poorly understood. We previously reported that Smad1/5 is maximally activated at physiological FSS. Smad1/5 limits Akt activation, suggesting that inhibiting Smad1/5 may facilitate outward remodeling. Here we report that high FSS suppresses Smad1/5 by elevating KLF2, which induces the bone morphogenetic protein (BMP) pathway inhibitor, BMP-binding endothelial regulator (BMPER), thereby de-inhibiting Akt. In mice, surgically induced high FSS elevated BMPER expression, inactivated Smad1/5 and induced vessel outward remodeling. Endothelial BMPER deletion impaired blood flow recovery and vascular remodeling. Blocking endothelial cell Smad1/5 activation with BMP9/10 blocking antibodies improved vascular remodeling in mouse models of type 1 and type 2 diabetes. Suppression of Smad1/5 is thus a potential therapeutic approach for ischemic disease. Deng et al. show that endothelial cells respond to high fluid shear stress by KLF2-mediated induction of the BMP–Smad1/5 pathway inhibitor BMPER, resulting in outward vessel remodeling, and apply this knowledge to develop an approach that improves vessel remodeling in mouse models of diabetes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
Integrative proteomic analyses across common cardiac diseases yield mechanistic insights and enhanced prediction. Genetic and phenotypic architecture of human myocardial trabeculation. Intrinsic GATA4 expression sensitizes the aortic root to dilation in a Loeys-Dietz syndrome mouse model. GLS2 links glutamine metabolism and atherosclerosis by remodeling artery walls. Glutamine-glutamate imbalance in the pathogenesis of cardiovascular disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1