Tony Castillo-Calzadilla, Jesús Oroya-Villalta, Cruz E Borges
{"title":"基于模糊逻辑方法的正能量住宅区能源管理系统 (RESTORATIVE)","authors":"Tony Castillo-Calzadilla, Jesús Oroya-Villalta, Cruz E Borges","doi":"10.3390/smartcities7040070","DOIUrl":null,"url":null,"abstract":"There is a clear European Strategy to transition by 2050 from a fossil fuel-based economy to a completely new system based on renewable energy resources, with electricity as the main energy carrier. Positive Energy Districts (PEDs) are urban areas that produce at least as much energy as their yearly consumption. To meet this objective, they must incorporate distributed generation based on renewable systems within their boundaries. This article considers the fluctuations in electricity prices and local renewable availability and develops a PED model with a centralised energy storage system focused on electricity self-sufficiency and self-consumption. We present a fuzzy logic-based energy management system which optimises the state of charge of the energy storage solution considering local electricity production and loads along with the contracted electric tariff. The methodology is tested in a PED comprising 360 households in Bilbao (a city in the north of Spain), setting various scenarios, including changes in the size of the electric storage, long-term climate change effects, and extreme changes in the price of energy carriers. The study revealed that the assessed PED could reach up to 75.6% self-sufficiency and 76.8% self-consumption, with climate change expected to improve these values. On economic aspects, the return on investment of the proposal ranges from 6 up to 12 years depending on the configuration choice. Also, the case that boosts the economic viability is tight to non-business as usual (BaU), whichever event spiked up the prices or climate change conditions shortens the economic variables. The average bill is around 12.89 EUR/month per house for scenario BaU; meanwhile, a catastrophic event increases the bill by as much as 76.7%. On the other hand, climate crisis events impact energy generation, strengthening this and, as a consequence, slightly reducing the bill by up to 11.47 EUR/month.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Management System for a Residential Positive Energy District Based on Fuzzy Logic Approach (RESTORATIVE)\",\"authors\":\"Tony Castillo-Calzadilla, Jesús Oroya-Villalta, Cruz E Borges\",\"doi\":\"10.3390/smartcities7040070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a clear European Strategy to transition by 2050 from a fossil fuel-based economy to a completely new system based on renewable energy resources, with electricity as the main energy carrier. Positive Energy Districts (PEDs) are urban areas that produce at least as much energy as their yearly consumption. To meet this objective, they must incorporate distributed generation based on renewable systems within their boundaries. This article considers the fluctuations in electricity prices and local renewable availability and develops a PED model with a centralised energy storage system focused on electricity self-sufficiency and self-consumption. We present a fuzzy logic-based energy management system which optimises the state of charge of the energy storage solution considering local electricity production and loads along with the contracted electric tariff. The methodology is tested in a PED comprising 360 households in Bilbao (a city in the north of Spain), setting various scenarios, including changes in the size of the electric storage, long-term climate change effects, and extreme changes in the price of energy carriers. The study revealed that the assessed PED could reach up to 75.6% self-sufficiency and 76.8% self-consumption, with climate change expected to improve these values. On economic aspects, the return on investment of the proposal ranges from 6 up to 12 years depending on the configuration choice. Also, the case that boosts the economic viability is tight to non-business as usual (BaU), whichever event spiked up the prices or climate change conditions shortens the economic variables. The average bill is around 12.89 EUR/month per house for scenario BaU; meanwhile, a catastrophic event increases the bill by as much as 76.7%. On the other hand, climate crisis events impact energy generation, strengthening this and, as a consequence, slightly reducing the bill by up to 11.47 EUR/month.\",\"PeriodicalId\":34482,\"journal\":{\"name\":\"Smart Cities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Cities\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities7040070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities7040070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Energy Management System for a Residential Positive Energy District Based on Fuzzy Logic Approach (RESTORATIVE)
There is a clear European Strategy to transition by 2050 from a fossil fuel-based economy to a completely new system based on renewable energy resources, with electricity as the main energy carrier. Positive Energy Districts (PEDs) are urban areas that produce at least as much energy as their yearly consumption. To meet this objective, they must incorporate distributed generation based on renewable systems within their boundaries. This article considers the fluctuations in electricity prices and local renewable availability and develops a PED model with a centralised energy storage system focused on electricity self-sufficiency and self-consumption. We present a fuzzy logic-based energy management system which optimises the state of charge of the energy storage solution considering local electricity production and loads along with the contracted electric tariff. The methodology is tested in a PED comprising 360 households in Bilbao (a city in the north of Spain), setting various scenarios, including changes in the size of the electric storage, long-term climate change effects, and extreme changes in the price of energy carriers. The study revealed that the assessed PED could reach up to 75.6% self-sufficiency and 76.8% self-consumption, with climate change expected to improve these values. On economic aspects, the return on investment of the proposal ranges from 6 up to 12 years depending on the configuration choice. Also, the case that boosts the economic viability is tight to non-business as usual (BaU), whichever event spiked up the prices or climate change conditions shortens the economic variables. The average bill is around 12.89 EUR/month per house for scenario BaU; meanwhile, a catastrophic event increases the bill by as much as 76.7%. On the other hand, climate crisis events impact energy generation, strengthening this and, as a consequence, slightly reducing the bill by up to 11.47 EUR/month.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.