Hongwu Tang, Kang Chen, Saiyu Yuan, Lei Xu, Jiajian Qiu, Qingwei Lin, Carlo Gualtieri
{"title":"支流流入量对主流非稳定流滞后和流体力学的影响","authors":"Hongwu Tang, Kang Chen, Saiyu Yuan, Lei Xu, Jiajian Qiu, Qingwei Lin, Carlo Gualtieri","doi":"10.2166/nh.2024.018","DOIUrl":null,"url":null,"abstract":"\n Flooding propagation is a crucial aspect of hydrological monitoring and forecasting. Previous studies have focused on hysteresis in the rating curve, caused by energy loss during flood propagation. However, the impact of tributary inflow on hysteresis downstream remains unclear, leading to inconsistent field observations on whether it strengthens or weakens hysteresis. In this study, we conducted flume experiments to identify the relationship between hysteresis in unsteady flow and the discharge magnitude of the tributary and the unsteady flow period in the mainstream. It was found that the discharge variations in the tributary had a larger influence on hysteresis compared to the periodical variations in the mainstream unsteady flow. Interestingly, the hysteresis of the unsteady flow had an initial strengthening followed by weakening as the tributary discharge increased. When the tributary inflow was low, the widening of the downstream cross-section sharpened the flood wave, increasing the hysteresis. However, as the tributary discharge increased to generate a backwater effect on the mainstream, the pressure gradient flattened flood waves, thereby weakening the hysteresis. This study improves our understanding of how tributary inflow affects flood propagation in the mainstream, offering new insights for flood prediction and control.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":"21 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of tributary inflows on unsteady flow hysteresis and hydrodynamics in the mainstream\",\"authors\":\"Hongwu Tang, Kang Chen, Saiyu Yuan, Lei Xu, Jiajian Qiu, Qingwei Lin, Carlo Gualtieri\",\"doi\":\"10.2166/nh.2024.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Flooding propagation is a crucial aspect of hydrological monitoring and forecasting. Previous studies have focused on hysteresis in the rating curve, caused by energy loss during flood propagation. However, the impact of tributary inflow on hysteresis downstream remains unclear, leading to inconsistent field observations on whether it strengthens or weakens hysteresis. In this study, we conducted flume experiments to identify the relationship between hysteresis in unsteady flow and the discharge magnitude of the tributary and the unsteady flow period in the mainstream. It was found that the discharge variations in the tributary had a larger influence on hysteresis compared to the periodical variations in the mainstream unsteady flow. Interestingly, the hysteresis of the unsteady flow had an initial strengthening followed by weakening as the tributary discharge increased. When the tributary inflow was low, the widening of the downstream cross-section sharpened the flood wave, increasing the hysteresis. However, as the tributary discharge increased to generate a backwater effect on the mainstream, the pressure gradient flattened flood waves, thereby weakening the hysteresis. This study improves our understanding of how tributary inflow affects flood propagation in the mainstream, offering new insights for flood prediction and control.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\"21 12\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2024.018\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2024.018","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Effects of tributary inflows on unsteady flow hysteresis and hydrodynamics in the mainstream
Flooding propagation is a crucial aspect of hydrological monitoring and forecasting. Previous studies have focused on hysteresis in the rating curve, caused by energy loss during flood propagation. However, the impact of tributary inflow on hysteresis downstream remains unclear, leading to inconsistent field observations on whether it strengthens or weakens hysteresis. In this study, we conducted flume experiments to identify the relationship between hysteresis in unsteady flow and the discharge magnitude of the tributary and the unsteady flow period in the mainstream. It was found that the discharge variations in the tributary had a larger influence on hysteresis compared to the periodical variations in the mainstream unsteady flow. Interestingly, the hysteresis of the unsteady flow had an initial strengthening followed by weakening as the tributary discharge increased. When the tributary inflow was low, the widening of the downstream cross-section sharpened the flood wave, increasing the hysteresis. However, as the tributary discharge increased to generate a backwater effect on the mainstream, the pressure gradient flattened flood waves, thereby weakening the hysteresis. This study improves our understanding of how tributary inflow affects flood propagation in the mainstream, offering new insights for flood prediction and control.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.