{"title":"具有空间稳定结构的新型形状记忆合金模块化机器人","authors":"Junlong Xiao, Michael Yu Wang, Chao Chen","doi":"10.1002/aisy.202400091","DOIUrl":null,"url":null,"abstract":"<p>Soft robots exhibit significant flexibility but normally lack stability owing to their inherent low stiffness. Current solutions for achieving variable stiffness or implementing lock mechanisms tend to involve complex structures. Additionally, passive solutions like bistable and multistate mechanisms lack spatial stable characteristics. This study presents a novel shape memory alloy (SMA) modular robot with spatially stable structure, by utilizing gooseneck as the backbone. This is the first time that a concept of spatially stable structure is proposed. When the power is off, the robot can still maintain its current posture in three-dimensional space and resist external disturbance. The SMA spring and gooseneck are characterized, elucidating the mechanism behind achieving spatial stability. Then, a controller based on the inverse kinematics is designed, and validated by experiments. The results demonstrate the structural stability of the robot. Specifically, it can withstand a maximum external force of 2.5 N (0.0875 Nm) when bent at an angle of 20° without consuming energy. Moreover, with the assistance of the SMA spring, this resistance capacity surpasses 5 N (0.175 Nm).</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 10","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400091","citationCount":"0","resultStr":"{\"title\":\"A Novel Shape Memory Alloy Modular Robot with Spatially Stable Structure\",\"authors\":\"Junlong Xiao, Michael Yu Wang, Chao Chen\",\"doi\":\"10.1002/aisy.202400091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soft robots exhibit significant flexibility but normally lack stability owing to their inherent low stiffness. Current solutions for achieving variable stiffness or implementing lock mechanisms tend to involve complex structures. Additionally, passive solutions like bistable and multistate mechanisms lack spatial stable characteristics. This study presents a novel shape memory alloy (SMA) modular robot with spatially stable structure, by utilizing gooseneck as the backbone. This is the first time that a concept of spatially stable structure is proposed. When the power is off, the robot can still maintain its current posture in three-dimensional space and resist external disturbance. The SMA spring and gooseneck are characterized, elucidating the mechanism behind achieving spatial stability. Then, a controller based on the inverse kinematics is designed, and validated by experiments. The results demonstrate the structural stability of the robot. Specifically, it can withstand a maximum external force of 2.5 N (0.0875 Nm) when bent at an angle of 20° without consuming energy. Moreover, with the assistance of the SMA spring, this resistance capacity surpasses 5 N (0.175 Nm).</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400091\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
软体机器人具有极大的灵活性,但由于其固有的低刚度,通常缺乏稳定性。目前实现可变刚度或实施锁定机制的解决方案往往涉及复杂的结构。此外,双稳态和多态机制等被动解决方案缺乏空间稳定特性。本研究利用鹅颈作为骨架,提出了一种具有空间稳定结构的新型形状记忆合金(SMA)模块化机器人。这是首次提出空间稳定结构的概念。当电源关闭时,机器人仍能在三维空间中保持当前姿态,抵御外界干扰。本文对 SMA 弹簧和鹅颈进行了描述,阐明了实现空间稳定的机理。然后,设计了基于逆运动学的控制器,并通过实验进行了验证。实验结果证明了机器人的结构稳定性。具体来说,当机器人弯曲 20° 角时,它可以承受 2.5 牛(0.0875 牛米)的最大外力,而不会消耗能量。此外,在 SMA 弹簧的辅助下,这种抵抗能力超过了 5 牛顿(0.175 牛米)。
A Novel Shape Memory Alloy Modular Robot with Spatially Stable Structure
Soft robots exhibit significant flexibility but normally lack stability owing to their inherent low stiffness. Current solutions for achieving variable stiffness or implementing lock mechanisms tend to involve complex structures. Additionally, passive solutions like bistable and multistate mechanisms lack spatial stable characteristics. This study presents a novel shape memory alloy (SMA) modular robot with spatially stable structure, by utilizing gooseneck as the backbone. This is the first time that a concept of spatially stable structure is proposed. When the power is off, the robot can still maintain its current posture in three-dimensional space and resist external disturbance. The SMA spring and gooseneck are characterized, elucidating the mechanism behind achieving spatial stability. Then, a controller based on the inverse kinematics is designed, and validated by experiments. The results demonstrate the structural stability of the robot. Specifically, it can withstand a maximum external force of 2.5 N (0.0875 Nm) when bent at an angle of 20° without consuming energy. Moreover, with the assistance of the SMA spring, this resistance capacity surpasses 5 N (0.175 Nm).