{"title":"Fe2O3 对用于固定核废料的含 Mo 硼硅玻璃的结构和性能的影响","authors":"You-wu Xu, Q. Liao, Fu Wang, Yuxin Gu, Boyang Pu, Hanzhen Zhu","doi":"10.1111/ijag.16680","DOIUrl":null,"url":null,"abstract":"As a fission product in high‐level radioactive nuclear waste, Mo has low solubility in borosilicate glass. Fe2O3 is not only a prevalent transition metal element but also a major corrosion product in high‐level radioactive nuclear waste. Against this backdrop, the effect of Fe2O3 content on the structure and chemical durability of typical molybdenum‐containing sodium borosilicate glasses for nuclear waste immobilization are studied. The results show that the samples containing more than 3.85 mol% Fe2O3, a completely homogenous amorphous glass sample is obtained. Moreover, the mechanism of the effect of Fe2O3 on the solubility of Mo is discussed in detail. In this work, a portion of Fe3+ is reduced to Fe2+ and enters into the glasses as a charge compensation ion as Fe2+O6. Concurrently, Fe3+ ions contribute to the formation of the glass networks as Fe3+O4. Iron incorporation can improve the chemical durability of the sample.","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Fe2O3 on the structure and properties of Mo‐containing borosilicate glasses for nuclear waste immobilization\",\"authors\":\"You-wu Xu, Q. Liao, Fu Wang, Yuxin Gu, Boyang Pu, Hanzhen Zhu\",\"doi\":\"10.1111/ijag.16680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a fission product in high‐level radioactive nuclear waste, Mo has low solubility in borosilicate glass. Fe2O3 is not only a prevalent transition metal element but also a major corrosion product in high‐level radioactive nuclear waste. Against this backdrop, the effect of Fe2O3 content on the structure and chemical durability of typical molybdenum‐containing sodium borosilicate glasses for nuclear waste immobilization are studied. The results show that the samples containing more than 3.85 mol% Fe2O3, a completely homogenous amorphous glass sample is obtained. Moreover, the mechanism of the effect of Fe2O3 on the solubility of Mo is discussed in detail. In this work, a portion of Fe3+ is reduced to Fe2+ and enters into the glasses as a charge compensation ion as Fe2+O6. Concurrently, Fe3+ ions contribute to the formation of the glass networks as Fe3+O4. Iron incorporation can improve the chemical durability of the sample.\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/ijag.16680\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijag.16680","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Effect of Fe2O3 on the structure and properties of Mo‐containing borosilicate glasses for nuclear waste immobilization
As a fission product in high‐level radioactive nuclear waste, Mo has low solubility in borosilicate glass. Fe2O3 is not only a prevalent transition metal element but also a major corrosion product in high‐level radioactive nuclear waste. Against this backdrop, the effect of Fe2O3 content on the structure and chemical durability of typical molybdenum‐containing sodium borosilicate glasses for nuclear waste immobilization are studied. The results show that the samples containing more than 3.85 mol% Fe2O3, a completely homogenous amorphous glass sample is obtained. Moreover, the mechanism of the effect of Fe2O3 on the solubility of Mo is discussed in detail. In this work, a portion of Fe3+ is reduced to Fe2+ and enters into the glasses as a charge compensation ion as Fe2+O6. Concurrently, Fe3+ ions contribute to the formation of the glass networks as Fe3+O4. Iron incorporation can improve the chemical durability of the sample.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.