从大块化学成分推断火星地幔的矿物学特征

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Meteoritics & Planetary Science Pub Date : 2024-07-12 DOI:10.1111/maps.14235
Shuying Yang, Munir Humayun, Kevin Righter
{"title":"从大块化学成分推断火星地幔的矿物学特征","authors":"Shuying Yang,&nbsp;Munir Humayun,&nbsp;Kevin Righter","doi":"10.1111/maps.14235","DOIUrl":null,"url":null,"abstract":"<p>Understanding the mineralogy of the Martian mantle is essential for constructing geochemical and geophysical models of Mars. This study employs the pMELTS program to determine the mineralogy at the solidus from 11 published bulk silicate Mars (BSM) compositions, within a pressure range of 2–5 GPa. The pMELTS results align with experimental data and calculations from another thermodynamic program (Perple_X/stx11). Mineral modes from compositional models based on Martian meteorite geochemistry show relatively consistent abundances modes (olivine: 48–56 wt%, orthopyroxene: 20–25 wt%, clinopyroxene: 15–17 wt%, garnet: 6–9 wt%). In contrast, mineral modes from compositional models that are not based on Martian meteorite geochemistry exhibit a wider range of olivine and garnet abundances. Additionally, we constrained the mineral modes of the Martian mantle using trace element partitioning and partial melting models. Our calculations indicate that melts derived from mantle sources with a hypothesized garnet content of 5–10 wt% closely match the analyzed compositions of shergottites, validating the garnet mode (6–9 wt%) constrained in our pMELTS calculations. Extracting low-degree (&lt;4 wt%) melts from a BSM to form depleted Martian mantle (DMM) does not significantly alter the mineralogical modes of solid residues, but it does lead to substantial trace elemental depletion in the DMM. Therefore, enriched, intermediate, and depleted shergottite sources are likely characterized by similar mineral modes yet differ in incompatible element abundances.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 9","pages":"2545-2564"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mineralogy of the Martian mantle inferred from bulk chemical compositions\",\"authors\":\"Shuying Yang,&nbsp;Munir Humayun,&nbsp;Kevin Righter\",\"doi\":\"10.1111/maps.14235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the mineralogy of the Martian mantle is essential for constructing geochemical and geophysical models of Mars. This study employs the pMELTS program to determine the mineralogy at the solidus from 11 published bulk silicate Mars (BSM) compositions, within a pressure range of 2–5 GPa. The pMELTS results align with experimental data and calculations from another thermodynamic program (Perple_X/stx11). Mineral modes from compositional models based on Martian meteorite geochemistry show relatively consistent abundances modes (olivine: 48–56 wt%, orthopyroxene: 20–25 wt%, clinopyroxene: 15–17 wt%, garnet: 6–9 wt%). In contrast, mineral modes from compositional models that are not based on Martian meteorite geochemistry exhibit a wider range of olivine and garnet abundances. Additionally, we constrained the mineral modes of the Martian mantle using trace element partitioning and partial melting models. Our calculations indicate that melts derived from mantle sources with a hypothesized garnet content of 5–10 wt% closely match the analyzed compositions of shergottites, validating the garnet mode (6–9 wt%) constrained in our pMELTS calculations. Extracting low-degree (&lt;4 wt%) melts from a BSM to form depleted Martian mantle (DMM) does not significantly alter the mineralogical modes of solid residues, but it does lead to substantial trace elemental depletion in the DMM. Therefore, enriched, intermediate, and depleted shergottite sources are likely characterized by similar mineral modes yet differ in incompatible element abundances.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"59 9\",\"pages\":\"2545-2564\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.14235\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14235","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

了解火星地幔的矿物学对构建火星地球化学和地球物理模型至关重要。本研究利用 pMELTS 程序,在 2-5 GPa 的压力范围内,根据 11 种已公布的硅酸盐火星(BSM)块体成分,确定了固相处的矿物学。pMELTS 的结果与实验数据和另一个热力学程序(Perple_X/stx11)的计算结果一致。基于火星陨石地球化学的成分模型中的矿物模式显示出相对一致的丰度模式(橄榄石:48-56 wt%,正长石:20-25 wt%,倩辉石:15-17 wt%,石榴石:6-9 wt%):6-9 wt%)。相比之下,非基于火星陨石地球化学的成分模型的矿物模式表现出更大的橄榄石和石榴石丰度范围。此外,我们还利用微量元素分配和部分熔融模型对火星地幔的矿物模式进行了约束。我们的计算表明,来自地幔源的熔体假定石榴石含量为5-10 wt%,这与舍尔戈特岩的分析成分密切吻合,验证了我们的pMELTS计算所约束的石榴石模式(6-9 wt%)。从 BSM 中提取低度(<4 wt%)熔体以形成贫化火地幔(DMM)不会显著改变固体残留物的矿物学模式,但会导致 DMM 中痕量元素的大量贫化。因此,富集型、中间型和贫化型舍尔格特岩来源可能具有相似的矿物模式,但在不相容元素丰度方面却有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mineralogy of the Martian mantle inferred from bulk chemical compositions

Understanding the mineralogy of the Martian mantle is essential for constructing geochemical and geophysical models of Mars. This study employs the pMELTS program to determine the mineralogy at the solidus from 11 published bulk silicate Mars (BSM) compositions, within a pressure range of 2–5 GPa. The pMELTS results align with experimental data and calculations from another thermodynamic program (Perple_X/stx11). Mineral modes from compositional models based on Martian meteorite geochemistry show relatively consistent abundances modes (olivine: 48–56 wt%, orthopyroxene: 20–25 wt%, clinopyroxene: 15–17 wt%, garnet: 6–9 wt%). In contrast, mineral modes from compositional models that are not based on Martian meteorite geochemistry exhibit a wider range of olivine and garnet abundances. Additionally, we constrained the mineral modes of the Martian mantle using trace element partitioning and partial melting models. Our calculations indicate that melts derived from mantle sources with a hypothesized garnet content of 5–10 wt% closely match the analyzed compositions of shergottites, validating the garnet mode (6–9 wt%) constrained in our pMELTS calculations. Extracting low-degree (<4 wt%) melts from a BSM to form depleted Martian mantle (DMM) does not significantly alter the mineralogical modes of solid residues, but it does lead to substantial trace elemental depletion in the DMM. Therefore, enriched, intermediate, and depleted shergottite sources are likely characterized by similar mineral modes yet differ in incompatible element abundances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteoritics & Planetary Science
Meteoritics & Planetary Science 地学天文-地球化学与地球物理
CiteScore
3.90
自引率
31.80%
发文量
121
审稿时长
3 months
期刊介绍: First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.
期刊最新文献
Issue Information Cover Constraints on the impact history of the Apollo 16 landing site: Implications of soil-like breccia noble gas records Issue Information Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1