少层CrPS4中的反常隧道磁阻振荡和电可调谐隧道各向异性磁阻

ZhuangEn Fu, Hong-Fei Huang, Piumi Samarawickrama, Kenji Watanabe, Takashi Taniguchi, Wenyong Wang, John Ackerman, Jiadong Zang, Jie-Xiang Yu, Jifa Tian
{"title":"少层CrPS4中的反常隧道磁阻振荡和电可调谐隧道各向异性磁阻","authors":"ZhuangEn Fu,&nbsp;Hong-Fei Huang,&nbsp;Piumi Samarawickrama,&nbsp;Kenji Watanabe,&nbsp;Takashi Taniguchi,&nbsp;Wenyong Wang,&nbsp;John Ackerman,&nbsp;Jiadong Zang,&nbsp;Jie-Xiang Yu,&nbsp;Jifa Tian","doi":"10.1002/apxr.202400052","DOIUrl":null,"url":null,"abstract":"<p>2D van der Waals (vdW) magnets with layer-dependent magnetic states and/or diverse magnetic interactions and anisotropies have attracted extensive research interest. Despite the advances, a notable challenge persists in effectively manipulating the tunneling anisotropic magnetoresistance (TAMR) of 2D vdW magnet-based magnetic tunnel junctions (MTJs). Here, this study reports the novel and anomalous tunneling magnetoresistance (TMR) oscillations and pioneering demonstration of bias and gate voltage controllable TAMR in 2D vdW MTJs, utilizing few-layer CrPS<sub>4</sub>. This material, inherently an antiferromagnet, transitions to a canted magnetic order upon application of external magnetic fields. Through TMR measurements, this work unveils the novel layer-dependent oscillations in the tunneling resistance for few-layer CrPS<sub>4</sub> devices under both out-of-plane and in-plane magnetic fields, with a pronounced controllability via gate voltage. Intriguingly, this study demonstrates that both the polarity and magnitude of TAMR in CrPS<sub>4</sub> can be effectively tuned through either a bias or gate voltage. The mechanism behind this electrically tunable TAMR is further elucidated through first-principles calculations. The implications of the findings are far-reaching, providing new insights into 2D magnetism and opening avenues for the development of innovative spintronic devices based on 2D vdW magnets.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400052","citationCount":"0","resultStr":"{\"title\":\"Anomalous Tunneling Magnetoresistance Oscillation and Electrically Tunable Tunneling Anisotropic Magnetoresistance in Few-Layer CrPS4\",\"authors\":\"ZhuangEn Fu,&nbsp;Hong-Fei Huang,&nbsp;Piumi Samarawickrama,&nbsp;Kenji Watanabe,&nbsp;Takashi Taniguchi,&nbsp;Wenyong Wang,&nbsp;John Ackerman,&nbsp;Jiadong Zang,&nbsp;Jie-Xiang Yu,&nbsp;Jifa Tian\",\"doi\":\"10.1002/apxr.202400052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>2D van der Waals (vdW) magnets with layer-dependent magnetic states and/or diverse magnetic interactions and anisotropies have attracted extensive research interest. Despite the advances, a notable challenge persists in effectively manipulating the tunneling anisotropic magnetoresistance (TAMR) of 2D vdW magnet-based magnetic tunnel junctions (MTJs). Here, this study reports the novel and anomalous tunneling magnetoresistance (TMR) oscillations and pioneering demonstration of bias and gate voltage controllable TAMR in 2D vdW MTJs, utilizing few-layer CrPS<sub>4</sub>. This material, inherently an antiferromagnet, transitions to a canted magnetic order upon application of external magnetic fields. Through TMR measurements, this work unveils the novel layer-dependent oscillations in the tunneling resistance for few-layer CrPS<sub>4</sub> devices under both out-of-plane and in-plane magnetic fields, with a pronounced controllability via gate voltage. Intriguingly, this study demonstrates that both the polarity and magnitude of TAMR in CrPS<sub>4</sub> can be effectively tuned through either a bias or gate voltage. The mechanism behind this electrically tunable TAMR is further elucidated through first-principles calculations. The implications of the findings are far-reaching, providing new insights into 2D magnetism and opening avenues for the development of innovative spintronic devices based on 2D vdW magnets.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"3 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维范德瓦耳斯(vdW)磁体具有层依赖磁态和/或多种磁相互作用和各向异性,这引起了广泛的研究兴趣。尽管取得了这些进展,但在有效操纵基于二维范德华磁体的磁性隧道结(MTJs)的隧穿各向异性磁阻(TAMR)方面仍然存在显著挑战。在此,本研究报告了新颖的反常隧穿磁阻(TMR)振荡,并利用少层 CrPS4 率先展示了二维 vdW MTJ 中偏置和栅极电压可控的 TAMR。这种材料本身是一种反铁磁体,但在施加外部磁场时会转变为倾斜磁序。通过 TMR 测量,这项研究揭示了少层 CrPS4 器件在平面外磁场和平面内磁场条件下隧穿电阻随层变化的新型振荡,并通过栅极电压实现了明显的可控性。有趣的是,这项研究表明,CrPS4 中隧穿电阻的极性和大小都可以通过偏压或栅极电压进行有效调节。通过第一原理计算,进一步阐明了这种电可调 TAMR 背后的机制。这些发现影响深远,为二维磁性提供了新的见解,并为开发基于二维 vdW 磁体的创新自旋电子器件开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomalous Tunneling Magnetoresistance Oscillation and Electrically Tunable Tunneling Anisotropic Magnetoresistance in Few-Layer CrPS4

2D van der Waals (vdW) magnets with layer-dependent magnetic states and/or diverse magnetic interactions and anisotropies have attracted extensive research interest. Despite the advances, a notable challenge persists in effectively manipulating the tunneling anisotropic magnetoresistance (TAMR) of 2D vdW magnet-based magnetic tunnel junctions (MTJs). Here, this study reports the novel and anomalous tunneling magnetoresistance (TMR) oscillations and pioneering demonstration of bias and gate voltage controllable TAMR in 2D vdW MTJs, utilizing few-layer CrPS4. This material, inherently an antiferromagnet, transitions to a canted magnetic order upon application of external magnetic fields. Through TMR measurements, this work unveils the novel layer-dependent oscillations in the tunneling resistance for few-layer CrPS4 devices under both out-of-plane and in-plane magnetic fields, with a pronounced controllability via gate voltage. Intriguingly, this study demonstrates that both the polarity and magnitude of TAMR in CrPS4 can be effectively tuned through either a bias or gate voltage. The mechanism behind this electrically tunable TAMR is further elucidated through first-principles calculations. The implications of the findings are far-reaching, providing new insights into 2D magnetism and opening avenues for the development of innovative spintronic devices based on 2D vdW magnets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties (Adv. Phys. Res. 12/2024) Masthead (Adv. Phys. Res. 12/2024) Epithelial Folding Through Local Degradation of an Elastic Basement Membrane Plate Observation of Thermally Induced Piezomagnetic Switching in Cu2OSeO3 Polymorph Synthesized under High-Pressure (Adv. Phys. Res. 11/2024) Exploring Green Fluorescent Protein Brownian Motion: Temperature and Concentration Dependencies Through Luminescence Thermometry (Adv. Phys. Res. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1