铑络合物锚定和超分子聚合物接枝的 CdS 纳米花,用于增强 H2O2 的光合作用和光生物催化 C-H 键氧官能化

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Frontiers of Chemical Science and Engineering Pub Date : 2024-07-10 DOI:10.1007/s11705-024-2465-6
Hongwei Jia, Xiaoyang Yue, Yuying Hou, Fei Huang, Cuiyao Cao, Feifei Jia, Guanhua Liu, Xiaobing Zheng, Yunting Liu, Yanjun Jiang
{"title":"铑络合物锚定和超分子聚合物接枝的 CdS 纳米花,用于增强 H2O2 的光合作用和光生物催化 C-H 键氧官能化","authors":"Hongwei Jia,&nbsp;Xiaoyang Yue,&nbsp;Yuying Hou,&nbsp;Fei Huang,&nbsp;Cuiyao Cao,&nbsp;Feifei Jia,&nbsp;Guanhua Liu,&nbsp;Xiaobing Zheng,&nbsp;Yunting Liu,&nbsp;Yanjun Jiang","doi":"10.1007/s11705-024-2465-6","DOIUrl":null,"url":null,"abstract":"<div><p>Unspecific peroxygenases exhibit high activity for the selective oxyfunctionalization of inert C(sp<sup>3</sup>)-H bonds using only H<sub>2</sub>O<sub>2</sub> as a clean oxidant, while also exhibiting sensitivity to H<sub>2</sub>O<sub>2</sub> concentration. CdS-based semiconductors are promising for the photosynthesis of H<sub>2</sub>O<sub>2</sub> owing to their adequately negative potential for oxygen reduction reaction via a proton-coupled electron transfer process, however, they suffer from fast H<sub>2</sub>O<sub>2</sub> decomposition on the surface of pristine CdS. Therefore, [Cp*Rh(bpy)H<sub>2</sub>O]<sup>2+</sup>, a highly selective proton-coupled electron transfer catalyst, was anchored onto a supramolecular polymer-grafted CdS nanoflower to construct an efficient integrated photocatalyst for generating H<sub>2</sub>O<sub>2</sub>, mitigating the surface issue of pristine CdS, increasing light absorption, accelerating photonic carrier separation, and enhancing oxygen reduction reaction selectivity to H<sub>2</sub>O<sub>2</sub>. This photocatalyst promoted the light driven H<sub>2</sub>O<sub>2</sub> generation rate up to 1345 µmol·L<sup>−1</sup>·g<sup>−1</sup>·h<sup>−1</sup>, which was 2.4 times that of pristine CdS. The constructed heterojunction photocatalyst could supply H<sub>2</sub>O<sub>2</sub> <i>in situ</i> for nonspecific peroxygenases to catalyze the C-H oxyfunctionalization of ethylbenzene, achieving a yield of 81% and an ee value of 99% under optimum conditions. A wide range of substrates were converted to the corresponding chiral alcohols using this photo-enzyme catalytic system, achieving the corresponding chiral alcohols in good yield (51%–88%) and excellent enantioselectivity (90%–99% ee).</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhodium complex-anchored and supramolecular polymer-grafted CdS nanoflower for enhanced photosynthesis of H2O2 and photobiocatalytic C-H bond oxyfunctionalization\",\"authors\":\"Hongwei Jia,&nbsp;Xiaoyang Yue,&nbsp;Yuying Hou,&nbsp;Fei Huang,&nbsp;Cuiyao Cao,&nbsp;Feifei Jia,&nbsp;Guanhua Liu,&nbsp;Xiaobing Zheng,&nbsp;Yunting Liu,&nbsp;Yanjun Jiang\",\"doi\":\"10.1007/s11705-024-2465-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unspecific peroxygenases exhibit high activity for the selective oxyfunctionalization of inert C(sp<sup>3</sup>)-H bonds using only H<sub>2</sub>O<sub>2</sub> as a clean oxidant, while also exhibiting sensitivity to H<sub>2</sub>O<sub>2</sub> concentration. CdS-based semiconductors are promising for the photosynthesis of H<sub>2</sub>O<sub>2</sub> owing to their adequately negative potential for oxygen reduction reaction via a proton-coupled electron transfer process, however, they suffer from fast H<sub>2</sub>O<sub>2</sub> decomposition on the surface of pristine CdS. Therefore, [Cp*Rh(bpy)H<sub>2</sub>O]<sup>2+</sup>, a highly selective proton-coupled electron transfer catalyst, was anchored onto a supramolecular polymer-grafted CdS nanoflower to construct an efficient integrated photocatalyst for generating H<sub>2</sub>O<sub>2</sub>, mitigating the surface issue of pristine CdS, increasing light absorption, accelerating photonic carrier separation, and enhancing oxygen reduction reaction selectivity to H<sub>2</sub>O<sub>2</sub>. This photocatalyst promoted the light driven H<sub>2</sub>O<sub>2</sub> generation rate up to 1345 µmol·L<sup>−1</sup>·g<sup>−1</sup>·h<sup>−1</sup>, which was 2.4 times that of pristine CdS. The constructed heterojunction photocatalyst could supply H<sub>2</sub>O<sub>2</sub> <i>in situ</i> for nonspecific peroxygenases to catalyze the C-H oxyfunctionalization of ethylbenzene, achieving a yield of 81% and an ee value of 99% under optimum conditions. A wide range of substrates were converted to the corresponding chiral alcohols using this photo-enzyme catalytic system, achieving the corresponding chiral alcohols in good yield (51%–88%) and excellent enantioselectivity (90%–99% ee).</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2465-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2465-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

非特异性过氧化氢酶在仅使用 H2O2 作为清洁氧化剂对惰性 C(sp3)-H 键进行选择性氧官能化时表现出很高的活性,同时还表现出对 H2O2 浓度的敏感性。基于 CdS 的半导体通过质子耦合电子传递过程发生氧还原反应,具有足够的负电位,因此很有希望用于 H2O2 的光合作用,但它们在原始 CdS 表面会受到 H2O2 快速分解的影响。因此,在超分子聚合物接枝的 CdS 纳米花上锚定了高选择性质子耦合电子转移催化剂 [Cp*Rh(苄基)H2O]2+,构建了一种生成 H2O2 的高效集成光催化剂,缓解了原始 CdS 的表面问题,增加了光吸收,加速了光子载流子分离,提高了氧还原反应对 H2O2 的选择性。这种光催化剂能将光驱动的 H2O2 生成率提高到 1345 µmol-L-1-g-1-h-1,是原始 CdS 的 2.4 倍。所构建的异质结光催化剂可为非特异性过氧酶原位提供 H2O2,催化乙苯的 C-H 氧官能化,在最佳条件下,产率达到 81%,ee 值达到 99%。利用这种光酶催化系统可以将多种底物转化为相应的手性醇,获得的相应手性醇收率高(51%-88%),对映选择性好(90%-99% ee)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rhodium complex-anchored and supramolecular polymer-grafted CdS nanoflower for enhanced photosynthesis of H2O2 and photobiocatalytic C-H bond oxyfunctionalization

Unspecific peroxygenases exhibit high activity for the selective oxyfunctionalization of inert C(sp3)-H bonds using only H2O2 as a clean oxidant, while also exhibiting sensitivity to H2O2 concentration. CdS-based semiconductors are promising for the photosynthesis of H2O2 owing to their adequately negative potential for oxygen reduction reaction via a proton-coupled electron transfer process, however, they suffer from fast H2O2 decomposition on the surface of pristine CdS. Therefore, [Cp*Rh(bpy)H2O]2+, a highly selective proton-coupled electron transfer catalyst, was anchored onto a supramolecular polymer-grafted CdS nanoflower to construct an efficient integrated photocatalyst for generating H2O2, mitigating the surface issue of pristine CdS, increasing light absorption, accelerating photonic carrier separation, and enhancing oxygen reduction reaction selectivity to H2O2. This photocatalyst promoted the light driven H2O2 generation rate up to 1345 µmol·L−1·g−1·h−1, which was 2.4 times that of pristine CdS. The constructed heterojunction photocatalyst could supply H2O2 in situ for nonspecific peroxygenases to catalyze the C-H oxyfunctionalization of ethylbenzene, achieving a yield of 81% and an ee value of 99% under optimum conditions. A wide range of substrates were converted to the corresponding chiral alcohols using this photo-enzyme catalytic system, achieving the corresponding chiral alcohols in good yield (51%–88%) and excellent enantioselectivity (90%–99% ee).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
期刊最新文献
Effective lateral dispersion of momentum, heat and mass in bubbling fluidized beds Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface Chemical recycling of polyolefin waste: from the perspective of efficient pyrolysis reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1