用阻抗光谱仪测定 LiPON 电导率的有效性

Alexander Rudy, Alena Novozhilova, Julia Egorova
{"title":"用阻抗光谱仪测定 LiPON 电导率的有效性","authors":"Alexander Rudy, Alena Novozhilova, Julia Egorova","doi":"10.3390/batteries10070245","DOIUrl":null,"url":null,"abstract":"A hypothesis that the generally accepted value of the LiPON conductivity should be attributed to the absorption and displacement currents is substantiated. The reason is a small contribution of the drift current due to field screening by the electric double layer. The basis for this assumption is the measurement of the LiPON absorption capacitance, according to which its dielectric constant is about 106. An alternative equivalent circuit containing a non-ideal absorption element is proposed and its impedance is calculated. It is shown that the Bode diagrams of the alternative circuit approximate the experimental curves well. Parameters and the magnitude of electric field screening are calculated based on a proposed model of a double electric layer. Considering the screening effect, the drift conductivity of LiPON is obtained, which is in good agreement with the data on lithium concentration and ion mobility.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"19 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validity of LiPON Conductivity Determined by Impedance Spectroscopy\",\"authors\":\"Alexander Rudy, Alena Novozhilova, Julia Egorova\",\"doi\":\"10.3390/batteries10070245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hypothesis that the generally accepted value of the LiPON conductivity should be attributed to the absorption and displacement currents is substantiated. The reason is a small contribution of the drift current due to field screening by the electric double layer. The basis for this assumption is the measurement of the LiPON absorption capacitance, according to which its dielectric constant is about 106. An alternative equivalent circuit containing a non-ideal absorption element is proposed and its impedance is calculated. It is shown that the Bode diagrams of the alternative circuit approximate the experimental curves well. Parameters and the magnitude of electric field screening are calculated based on a proposed model of a double electric layer. Considering the screening effect, the drift conductivity of LiPON is obtained, which is in good agreement with the data on lithium concentration and ion mobility.\",\"PeriodicalId\":502356,\"journal\":{\"name\":\"Batteries\",\"volume\":\"19 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/batteries10070245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries10070245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个假设得到了证实,即普遍接受的 LiPON 电导率值应归因于吸收电流和位移电流。原因是双电层的场屏蔽作用对漂移电流的贡献较小。这一假设的依据是对 LiPON 吸收电容的测量,根据测量结果,其介电常数约为 106。我们提出了一个包含非理想吸收元件的替代等效电路,并计算了其阻抗。结果表明,替代电路的博德图与实验曲线十分接近。根据提出的双电层模型计算了电场屏蔽的参数和幅度。考虑到屏蔽效应,得出了 LiPON 的漂移电导率,这与锂浓度和离子迁移率的数据十分吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Validity of LiPON Conductivity Determined by Impedance Spectroscopy
A hypothesis that the generally accepted value of the LiPON conductivity should be attributed to the absorption and displacement currents is substantiated. The reason is a small contribution of the drift current due to field screening by the electric double layer. The basis for this assumption is the measurement of the LiPON absorption capacitance, according to which its dielectric constant is about 106. An alternative equivalent circuit containing a non-ideal absorption element is proposed and its impedance is calculated. It is shown that the Bode diagrams of the alternative circuit approximate the experimental curves well. Parameters and the magnitude of electric field screening are calculated based on a proposed model of a double electric layer. Considering the screening effect, the drift conductivity of LiPON is obtained, which is in good agreement with the data on lithium concentration and ion mobility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Binders for Li-Ion Battery Technologies and Beyond: A Comprehensive Review Influence of Acetonitrile on the Electrochemical Behavior of Ionic Liquid-Based Supercapacitors An Aging-Optimized State-of-Charge-Controlled Multi-Stage Constant Current (MCC) Fast Charging Algorithm for Commercial Li-Ion Battery Based on Three-Electrode Measurements Recent Advancements in Battery Thermal Management Systems for Enhanced Performance of Li-Ion Batteries: A Comprehensive Review Electrical Modeling and Characterization of Electrochemical Impedance Spectroscopy-Based Energy Storage Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1