Michael D. Pletcher, Peter G. Veals, Michael E. Wessler, David Church, Kirstin Harnos, James Correia, Randy J. Chase, W. J. Steenburgh
{"title":"犹他州小棉林峡谷高海拔地区冷季降雪预测验证","authors":"Michael D. Pletcher, Peter G. Veals, Michael E. Wessler, David Church, Kirstin Harnos, James Correia, Randy J. Chase, W. J. Steenburgh","doi":"10.1175/waf-d-23-0176.1","DOIUrl":null,"url":null,"abstract":"\nProducing a quantitative snowfall forecast (QSF) typically requires a model quantitative precipitation forecast (QPF) and snow-to-liquid ratio (SLR) estimate. QPF and SLR can vary significantly in space and time over complex terrain, necessitating fine-scale or point-specific forecasts of each component. Little Cottonwood Canyon (LCC) in Utah’s Wasatch Range frequently experiences high-impact winter storms and avalanche closures that result in substantial transportation and economic disruptions, making it an excellent testbed for evaluating snowfall forecasts. In this study, we validate QPFs, SLR forecasts, and QSFs produced by or derived from the Global Forecast System (GFS) and High-Resolution Rapid Refresh (HRRR) using liquid precipitation equivalent (LPE) and snowfall observations collected during the 2019/20 – 2022/23 cool seasons at the Alta–Collins snow-study site (2945 m MSL) in upper LCC. The 12-h QPFs produced by the GFS and HRRR underpredict the total LPE during the four cool seasons by 33% and 29%, respectively, and underpredict 50th, 75th, and 90th percentile event frequencies. Current operational SLR methods exhibit mean absolute errors of 4.5 – 7.7. In contrast, a locally trained random forest algorithm reduces SLR mean absolute errors to 3.7. Despite the random forest producing more accurate SLR forecasts, QSFs derived from operational SLR methods produce higher critical success indices since they exhibit positive SLR biases that offset negative QPF biases. These results indicate an overall underprediction of LPE by operational models in upper LCC and illustrate the need to identify sources of QSF bias to enhance QSF performance.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"102 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of cool-season snowfall forecasts at a high-elevation site in Utah’s Little Cottonwood Canyon\",\"authors\":\"Michael D. Pletcher, Peter G. Veals, Michael E. Wessler, David Church, Kirstin Harnos, James Correia, Randy J. Chase, W. J. Steenburgh\",\"doi\":\"10.1175/waf-d-23-0176.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nProducing a quantitative snowfall forecast (QSF) typically requires a model quantitative precipitation forecast (QPF) and snow-to-liquid ratio (SLR) estimate. QPF and SLR can vary significantly in space and time over complex terrain, necessitating fine-scale or point-specific forecasts of each component. Little Cottonwood Canyon (LCC) in Utah’s Wasatch Range frequently experiences high-impact winter storms and avalanche closures that result in substantial transportation and economic disruptions, making it an excellent testbed for evaluating snowfall forecasts. In this study, we validate QPFs, SLR forecasts, and QSFs produced by or derived from the Global Forecast System (GFS) and High-Resolution Rapid Refresh (HRRR) using liquid precipitation equivalent (LPE) and snowfall observations collected during the 2019/20 – 2022/23 cool seasons at the Alta–Collins snow-study site (2945 m MSL) in upper LCC. The 12-h QPFs produced by the GFS and HRRR underpredict the total LPE during the four cool seasons by 33% and 29%, respectively, and underpredict 50th, 75th, and 90th percentile event frequencies. Current operational SLR methods exhibit mean absolute errors of 4.5 – 7.7. In contrast, a locally trained random forest algorithm reduces SLR mean absolute errors to 3.7. Despite the random forest producing more accurate SLR forecasts, QSFs derived from operational SLR methods produce higher critical success indices since they exhibit positive SLR biases that offset negative QPF biases. These results indicate an overall underprediction of LPE by operational models in upper LCC and illustrate the need to identify sources of QSF bias to enhance QSF performance.\",\"PeriodicalId\":509742,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":\"102 31\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-23-0176.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0176.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Validation of cool-season snowfall forecasts at a high-elevation site in Utah’s Little Cottonwood Canyon
Producing a quantitative snowfall forecast (QSF) typically requires a model quantitative precipitation forecast (QPF) and snow-to-liquid ratio (SLR) estimate. QPF and SLR can vary significantly in space and time over complex terrain, necessitating fine-scale or point-specific forecasts of each component. Little Cottonwood Canyon (LCC) in Utah’s Wasatch Range frequently experiences high-impact winter storms and avalanche closures that result in substantial transportation and economic disruptions, making it an excellent testbed for evaluating snowfall forecasts. In this study, we validate QPFs, SLR forecasts, and QSFs produced by or derived from the Global Forecast System (GFS) and High-Resolution Rapid Refresh (HRRR) using liquid precipitation equivalent (LPE) and snowfall observations collected during the 2019/20 – 2022/23 cool seasons at the Alta–Collins snow-study site (2945 m MSL) in upper LCC. The 12-h QPFs produced by the GFS and HRRR underpredict the total LPE during the four cool seasons by 33% and 29%, respectively, and underpredict 50th, 75th, and 90th percentile event frequencies. Current operational SLR methods exhibit mean absolute errors of 4.5 – 7.7. In contrast, a locally trained random forest algorithm reduces SLR mean absolute errors to 3.7. Despite the random forest producing more accurate SLR forecasts, QSFs derived from operational SLR methods produce higher critical success indices since they exhibit positive SLR biases that offset negative QPF biases. These results indicate an overall underprediction of LPE by operational models in upper LCC and illustrate the need to identify sources of QSF bias to enhance QSF performance.