利用集合深度学习对未染色人类活精子进行形态学分类

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-07-08 DOI:10.1002/aisy.202400141
Sahar Shahali, Mubasshir Murshed, Lindsay Spencer, Ozlem Tunc, Ludmila Pisarevski, Jason Conceicao, Robert McLachlan, Moira K. O’Bryan, Klaus Ackermann, Deirdre Zander-Fox, Adrian Neild, Reza Nosrati
{"title":"利用集合深度学习对未染色人类活精子进行形态学分类","authors":"Sahar Shahali,&nbsp;Mubasshir Murshed,&nbsp;Lindsay Spencer,&nbsp;Ozlem Tunc,&nbsp;Ludmila Pisarevski,&nbsp;Jason Conceicao,&nbsp;Robert McLachlan,&nbsp;Moira K. O’Bryan,&nbsp;Klaus Ackermann,&nbsp;Deirdre Zander-Fox,&nbsp;Adrian Neild,&nbsp;Reza Nosrati","doi":"10.1002/aisy.202400141","DOIUrl":null,"url":null,"abstract":"<p>Sperm morphology analysis is crucial in infertility diagnosis and treatment. However, current clinical analytical methods use either chemical stains that render cells unusable for treatment or rely on subjective manual inspection. Here, an ensemble deep-learning model is presented for classification of live, unstained human sperm using <i>whole-cell</i> morphology. This model achieves an accuracy and precision of 94% benchmarked against the consensus of three andrology scientists who classified the images independently. The model loses less than a 12% prediction performance even when image resolution is reduced by over sixfold. This ensures compatibility across varied clinical imaging setups. This model also provides a high certainty and robust classification of challenging images, which divided the experts. By providing a consistent, automated approach for classifying live, unstained cells using quantitative data, this model offers promising future opportunities for enhancing clinical sperm selection practices and reducing day-to-day variability in clinics.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400141","citationCount":"0","resultStr":"{\"title\":\"Morphology Classification of Live Unstained Human Sperm Using Ensemble Deep Learning\",\"authors\":\"Sahar Shahali,&nbsp;Mubasshir Murshed,&nbsp;Lindsay Spencer,&nbsp;Ozlem Tunc,&nbsp;Ludmila Pisarevski,&nbsp;Jason Conceicao,&nbsp;Robert McLachlan,&nbsp;Moira K. O’Bryan,&nbsp;Klaus Ackermann,&nbsp;Deirdre Zander-Fox,&nbsp;Adrian Neild,&nbsp;Reza Nosrati\",\"doi\":\"10.1002/aisy.202400141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sperm morphology analysis is crucial in infertility diagnosis and treatment. However, current clinical analytical methods use either chemical stains that render cells unusable for treatment or rely on subjective manual inspection. Here, an ensemble deep-learning model is presented for classification of live, unstained human sperm using <i>whole-cell</i> morphology. This model achieves an accuracy and precision of 94% benchmarked against the consensus of three andrology scientists who classified the images independently. The model loses less than a 12% prediction performance even when image resolution is reduced by over sixfold. This ensures compatibility across varied clinical imaging setups. This model also provides a high certainty and robust classification of challenging images, which divided the experts. By providing a consistent, automated approach for classifying live, unstained cells using quantitative data, this model offers promising future opportunities for enhancing clinical sperm selection practices and reducing day-to-day variability in clinics.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400141\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

精子形态分析对不孕症的诊断和治疗至关重要。然而,目前的临床分析方法要么使用化学染色剂使细胞无法用于治疗,要么依赖主观的人工检查。本文介绍了一种集合深度学习模型,用于利用全细胞形态学对未染色的人类活精子进行分类。该模型的准确率和精确度均达到 94%,并以三位独立对图像进行分类的男性学科学家的共识为基准。即使图像分辨率降低六倍以上,该模型的预测性能损失也不到 12%。这确保了各种临床成像设置的兼容性。该模型还能对专家们意见不一的具有挑战性的图像进行高确定性和稳健的分类。该模型提供了一种使用定量数据对未染色活细胞进行分类的一致、自动化方法,为加强临床精子选择实践和减少诊所的日常变异性提供了大有可为的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphology Classification of Live Unstained Human Sperm Using Ensemble Deep Learning

Sperm morphology analysis is crucial in infertility diagnosis and treatment. However, current clinical analytical methods use either chemical stains that render cells unusable for treatment or rely on subjective manual inspection. Here, an ensemble deep-learning model is presented for classification of live, unstained human sperm using whole-cell morphology. This model achieves an accuracy and precision of 94% benchmarked against the consensus of three andrology scientists who classified the images independently. The model loses less than a 12% prediction performance even when image resolution is reduced by over sixfold. This ensures compatibility across varied clinical imaging setups. This model also provides a high certainty and robust classification of challenging images, which divided the experts. By providing a consistent, automated approach for classifying live, unstained cells using quantitative data, this model offers promising future opportunities for enhancing clinical sperm selection practices and reducing day-to-day variability in clinics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1