{"title":"不确定性感知领域自适应语义分割框架","authors":"Huilin Yin, Pengyu Wang, Boyu Liu, Jun Yan","doi":"10.1007/s43684-024-00070-0","DOIUrl":null,"url":null,"abstract":"<div><p>Semantic segmentation is significant to realize the scene understanding of autonomous driving. Due to the lack of annotated real-world data, the technology of domain adaptation is applied so that the model is trained on the synthetic data and inferred on the real data. However, this domain gap leads to aleatoric and epistemic uncertainty. These uncertainties link to the potential safety issue of autonomous driving in normal weather and adverse weather. In this study, we explore the scientific problem that has received sparse attention previously. We postulate that the Dual Attention module can mitigate the uncertainty in the task of semantic segmentation and provide some empirical study to validate it. Furthermore, the utilization of Kullback-Leibler divergence (KL divergence) helps the estimation of aleatoric uncertainty and boosts the robustness of the segmentation model. Our empirical study on the diverse datasets of semantic segmentation demonstrates the effectiveness of our method in normal and adverse weather. Our code is available at: https://github.com/liubo629/Seg-Uncertainty-dual-attention.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00070-0.pdf","citationCount":"0","resultStr":"{\"title\":\"An uncertainty-aware domain adaptive semantic segmentation framework\",\"authors\":\"Huilin Yin, Pengyu Wang, Boyu Liu, Jun Yan\",\"doi\":\"10.1007/s43684-024-00070-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Semantic segmentation is significant to realize the scene understanding of autonomous driving. Due to the lack of annotated real-world data, the technology of domain adaptation is applied so that the model is trained on the synthetic data and inferred on the real data. However, this domain gap leads to aleatoric and epistemic uncertainty. These uncertainties link to the potential safety issue of autonomous driving in normal weather and adverse weather. In this study, we explore the scientific problem that has received sparse attention previously. We postulate that the Dual Attention module can mitigate the uncertainty in the task of semantic segmentation and provide some empirical study to validate it. Furthermore, the utilization of Kullback-Leibler divergence (KL divergence) helps the estimation of aleatoric uncertainty and boosts the robustness of the segmentation model. Our empirical study on the diverse datasets of semantic segmentation demonstrates the effectiveness of our method in normal and adverse weather. Our code is available at: https://github.com/liubo629/Seg-Uncertainty-dual-attention.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-024-00070-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-024-00070-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00070-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An uncertainty-aware domain adaptive semantic segmentation framework
Semantic segmentation is significant to realize the scene understanding of autonomous driving. Due to the lack of annotated real-world data, the technology of domain adaptation is applied so that the model is trained on the synthetic data and inferred on the real data. However, this domain gap leads to aleatoric and epistemic uncertainty. These uncertainties link to the potential safety issue of autonomous driving in normal weather and adverse weather. In this study, we explore the scientific problem that has received sparse attention previously. We postulate that the Dual Attention module can mitigate the uncertainty in the task of semantic segmentation and provide some empirical study to validate it. Furthermore, the utilization of Kullback-Leibler divergence (KL divergence) helps the estimation of aleatoric uncertainty and boosts the robustness of the segmentation model. Our empirical study on the diverse datasets of semantic segmentation demonstrates the effectiveness of our method in normal and adverse weather. Our code is available at: https://github.com/liubo629/Seg-Uncertainty-dual-attention.