利用谐振腔系统检测假冒集成电路的快速、非破坏性方法

Aditya Nechiyil, Robert Lee, Gregg Chapman
{"title":"利用谐振腔系统检测假冒集成电路的快速、非破坏性方法","authors":"Aditya Nechiyil, Robert Lee, Gregg Chapman","doi":"10.3390/instruments8030037","DOIUrl":null,"url":null,"abstract":"The counterfeiting of integrated circuits (ICs) has been a growing issue. Current available methods used to detect counterfeit ICs can be expensive, imprecise, and time-consuming. This paper explores the resonant cavity system: a non-contact, non-destructive method to rapidly differentiate counterfeit ICs from authentic ones. The system captures a unique signature of an IC placed inside it. Data were captured for ICs of various technologies and authenticities. The data included return loss values captured at various transverse electric (TE) modes between 2.8 GHz and 6 GHz. This allowed for the comparison of the effectiveness of the various TE modes in being able to distinguish ICs. The resonant cavity system was able to distinguish most of the ICs at higher TE modes.","PeriodicalId":507788,"journal":{"name":"Instruments","volume":" 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rapid, Non-Destructive Method to Detect Counterfeit Integrated Circuits Using a Resonant Cavity System\",\"authors\":\"Aditya Nechiyil, Robert Lee, Gregg Chapman\",\"doi\":\"10.3390/instruments8030037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The counterfeiting of integrated circuits (ICs) has been a growing issue. Current available methods used to detect counterfeit ICs can be expensive, imprecise, and time-consuming. This paper explores the resonant cavity system: a non-contact, non-destructive method to rapidly differentiate counterfeit ICs from authentic ones. The system captures a unique signature of an IC placed inside it. Data were captured for ICs of various technologies and authenticities. The data included return loss values captured at various transverse electric (TE) modes between 2.8 GHz and 6 GHz. This allowed for the comparison of the effectiveness of the various TE modes in being able to distinguish ICs. The resonant cavity system was able to distinguish most of the ICs at higher TE modes.\",\"PeriodicalId\":507788,\"journal\":{\"name\":\"Instruments\",\"volume\":\" 37\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/instruments8030037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments8030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

集成电路(IC)造假问题日益严重。目前可用来检测假冒集成电路的方法昂贵、不精确且耗时。本文探讨了谐振腔系统:一种非接触、非破坏性的方法,用于快速区分假冒集成电路和真品。该系统能捕捉放置在其中的集成电路的独特签名。该系统采集了各种技术和真伪集成电路的数据。数据包括在 2.8 千兆赫和 6 千兆赫之间的各种横向电(TE)模式下捕获的回波损耗值。这样就可以比较各种 TE 模式在区分集成电路方面的有效性。谐振腔系统能够在较高的 TE 模式下分辨出大多数集成电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Rapid, Non-Destructive Method to Detect Counterfeit Integrated Circuits Using a Resonant Cavity System
The counterfeiting of integrated circuits (ICs) has been a growing issue. Current available methods used to detect counterfeit ICs can be expensive, imprecise, and time-consuming. This paper explores the resonant cavity system: a non-contact, non-destructive method to rapidly differentiate counterfeit ICs from authentic ones. The system captures a unique signature of an IC placed inside it. Data were captured for ICs of various technologies and authenticities. The data included return loss values captured at various transverse electric (TE) modes between 2.8 GHz and 6 GHz. This allowed for the comparison of the effectiveness of the various TE modes in being able to distinguish ICs. The resonant cavity system was able to distinguish most of the ICs at higher TE modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Rapid, Non-Destructive Method to Detect Counterfeit Integrated Circuits Using a Resonant Cavity System Design and Performance of a Low-Energy Gamma-Ray Trigger System for HERD Jitter Measurements of 1 cm2 LGADs for Space Experiments Development of High-Voltage Electrodes for Neutron Scattering Sample Environment Devices The Imaging X-ray Polarimetry Explorer (IXPE) and New Directions for the Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1