{"title":"含概率信息的费尔马特犹豫模糊多属性决策方法及其应用","authors":"Chuanyang Ruan, Xiangjing Chen, Lin Yan","doi":"10.3390/axioms13070456","DOIUrl":null,"url":null,"abstract":"When information is incomplete or uncertain, Fermatean hesitant fuzzy sets (FHFSs) can provide more information to help decision-makers deal with more complex problems. Typically, determining attribute weights assumes that each attribute has a fixed influence. Introducing probability information can enable one to consider the stochastic nature of evaluation data and better quantify the importance of the attributes. To aggregate data by considering the location and importance degrees of each attribute, this paper develops a Fermatean hesitant fuzzy multi-attribute decision-making (MADM) method with probabilistic information and an ordered weighted averaging (OWA) method. The OWA method combines the concepts of weights and sorting to sort and weigh average property values based on those weights. Therefore, this novel approach assigns weights based on the decision-maker’s preferences and introduces probabilities to assess attribute importance under specific circumstances, thereby broadening the scope of information expression. Then, this paper presents four probabilistic aggregation operators under the Fermatean hesitant fuzzy environment, including the Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (FHFPOWA/FHFPOWG) operators and the generalized Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (GFHFPOWA/GFHFPOWG) operators. These new operators are designed to quantify the importance of attributes and characterize the attitudes of decision-makers using a probabilistic and weighted vector. Then, a MADM method based on these proposed operators is developed. Finally, an illustrative example of selecting the best new retail enterprise demonstrates the effectiveness and practicality of the method.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fermatean Hesitant Fuzzy Multi-Attribute Decision-Making Method with Probabilistic Information and Its Application\",\"authors\":\"Chuanyang Ruan, Xiangjing Chen, Lin Yan\",\"doi\":\"10.3390/axioms13070456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When information is incomplete or uncertain, Fermatean hesitant fuzzy sets (FHFSs) can provide more information to help decision-makers deal with more complex problems. Typically, determining attribute weights assumes that each attribute has a fixed influence. Introducing probability information can enable one to consider the stochastic nature of evaluation data and better quantify the importance of the attributes. To aggregate data by considering the location and importance degrees of each attribute, this paper develops a Fermatean hesitant fuzzy multi-attribute decision-making (MADM) method with probabilistic information and an ordered weighted averaging (OWA) method. The OWA method combines the concepts of weights and sorting to sort and weigh average property values based on those weights. Therefore, this novel approach assigns weights based on the decision-maker’s preferences and introduces probabilities to assess attribute importance under specific circumstances, thereby broadening the scope of information expression. Then, this paper presents four probabilistic aggregation operators under the Fermatean hesitant fuzzy environment, including the Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (FHFPOWA/FHFPOWG) operators and the generalized Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (GFHFPOWA/GFHFPOWG) operators. These new operators are designed to quantify the importance of attributes and characterize the attitudes of decision-makers using a probabilistic and weighted vector. Then, a MADM method based on these proposed operators is developed. Finally, an illustrative example of selecting the best new retail enterprise demonstrates the effectiveness and practicality of the method.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fermatean Hesitant Fuzzy Multi-Attribute Decision-Making Method with Probabilistic Information and Its Application
When information is incomplete or uncertain, Fermatean hesitant fuzzy sets (FHFSs) can provide more information to help decision-makers deal with more complex problems. Typically, determining attribute weights assumes that each attribute has a fixed influence. Introducing probability information can enable one to consider the stochastic nature of evaluation data and better quantify the importance of the attributes. To aggregate data by considering the location and importance degrees of each attribute, this paper develops a Fermatean hesitant fuzzy multi-attribute decision-making (MADM) method with probabilistic information and an ordered weighted averaging (OWA) method. The OWA method combines the concepts of weights and sorting to sort and weigh average property values based on those weights. Therefore, this novel approach assigns weights based on the decision-maker’s preferences and introduces probabilities to assess attribute importance under specific circumstances, thereby broadening the scope of information expression. Then, this paper presents four probabilistic aggregation operators under the Fermatean hesitant fuzzy environment, including the Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (FHFPOWA/FHFPOWG) operators and the generalized Fermatean hesitant fuzzy probabilistic ordered weighted averaging/geometric (GFHFPOWA/GFHFPOWG) operators. These new operators are designed to quantify the importance of attributes and characterize the attitudes of decision-makers using a probabilistic and weighted vector. Then, a MADM method based on these proposed operators is developed. Finally, an illustrative example of selecting the best new retail enterprise demonstrates the effectiveness and practicality of the method.