{"title":"通过考虑湿蒸汽模型和干气模型,对排放压力对可再生制冷循环中蒸汽喷射器性能的影响进行数值研究","authors":"Yongman Lin, Zaijin Xie, Weihua Guan, Lili Gan","doi":"10.1515/cppm-2023-0092","DOIUrl":null,"url":null,"abstract":"Abstract In recent times, steam ejectors have garnered significant interest among researchers due to their environmental friendliness and the utilization of low-grade energy sources. However, a key drawback of the ejector refrigeration cycle (ERC) is its relatively low coefficient of performance (COP). Understanding the behavior of ejectors under various operating conditions is crucial for addressing this concern. This study specifically focuses on investigating the flow characteristics of ejectors in the single-choking mode. Both dry steam model (DSM) and wet steam model (WSM) are employed to analyze and evaluate the performance in this study. Based on the findings, it is evident that the discharge pressure (DP) significantly influences the flow characteristics. With increasing DP, there is a decrease in the Mach number and liquid mass fraction (LMF) within the ejector, while the temperature distribution shows an upward trend. Additionally, as the DP increases, there is a notable decline in the entrainment ratio (ER) and production entropy. With an increase in the DP, both the DSM and WSM exhibit similar trends. However, in the DSM, the ER reaches zero at an earlier stage compared to the WSM. Specifically, when the DP rises from 5000 Pa to 5600 Pa, there is a 12.6 % increase in the production entropy in the WSM, while the DSM experiences a slightly higher increase of 12.9 %.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of discharge pressure effect on steam ejector performance in renewable refrigeration cycle by considering wet steam model and dry gas model\",\"authors\":\"Yongman Lin, Zaijin Xie, Weihua Guan, Lili Gan\",\"doi\":\"10.1515/cppm-2023-0092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent times, steam ejectors have garnered significant interest among researchers due to their environmental friendliness and the utilization of low-grade energy sources. However, a key drawback of the ejector refrigeration cycle (ERC) is its relatively low coefficient of performance (COP). Understanding the behavior of ejectors under various operating conditions is crucial for addressing this concern. This study specifically focuses on investigating the flow characteristics of ejectors in the single-choking mode. Both dry steam model (DSM) and wet steam model (WSM) are employed to analyze and evaluate the performance in this study. Based on the findings, it is evident that the discharge pressure (DP) significantly influences the flow characteristics. With increasing DP, there is a decrease in the Mach number and liquid mass fraction (LMF) within the ejector, while the temperature distribution shows an upward trend. Additionally, as the DP increases, there is a notable decline in the entrainment ratio (ER) and production entropy. With an increase in the DP, both the DSM and WSM exhibit similar trends. However, in the DSM, the ER reaches zero at an earlier stage compared to the WSM. Specifically, when the DP rises from 5000 Pa to 5600 Pa, there is a 12.6 % increase in the production entropy in the WSM, while the DSM experiences a slightly higher increase of 12.9 %.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2023-0092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Numerical investigation of discharge pressure effect on steam ejector performance in renewable refrigeration cycle by considering wet steam model and dry gas model
Abstract In recent times, steam ejectors have garnered significant interest among researchers due to their environmental friendliness and the utilization of low-grade energy sources. However, a key drawback of the ejector refrigeration cycle (ERC) is its relatively low coefficient of performance (COP). Understanding the behavior of ejectors under various operating conditions is crucial for addressing this concern. This study specifically focuses on investigating the flow characteristics of ejectors in the single-choking mode. Both dry steam model (DSM) and wet steam model (WSM) are employed to analyze and evaluate the performance in this study. Based on the findings, it is evident that the discharge pressure (DP) significantly influences the flow characteristics. With increasing DP, there is a decrease in the Mach number and liquid mass fraction (LMF) within the ejector, while the temperature distribution shows an upward trend. Additionally, as the DP increases, there is a notable decline in the entrainment ratio (ER) and production entropy. With an increase in the DP, both the DSM and WSM exhibit similar trends. However, in the DSM, the ER reaches zero at an earlier stage compared to the WSM. Specifically, when the DP rises from 5000 Pa to 5600 Pa, there is a 12.6 % increase in the production entropy in the WSM, while the DSM experiences a slightly higher increase of 12.9 %.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.