热效应对单片 3D 铁电晶体管深度神经网络性能的影响

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-07-03 DOI:10.1002/aisy.202400019
Shubham Kumar, Yogesh Singh Chauhan, Hussam Amrouch
{"title":"热效应对单片 3D 铁电晶体管深度神经网络性能的影响","authors":"Shubham Kumar,&nbsp;Yogesh Singh Chauhan,&nbsp;Hussam Amrouch","doi":"10.1002/aisy.202400019","DOIUrl":null,"url":null,"abstract":"<p>Monolithic three-dimensional (M3D) integration advances integrated circuits by enhancing density and energy efficiency. Ferroelectric thin-film transistors (Fe-TFTs) attract attention for neuromorphic computing and back-end-of-the-line (BEOL) compatibility. However, M3D faces challenges like increased runtime temperatures due to limited heat dissipation, impacting system reliability. This work demonstrates the effect of temperature impact on single-gate (SG) Fe-TFT reliability. SG Fe-TFTs have limitations such as read-disturbance and small memory windows, constraining their use. To mitigate these, dual-gate (DG) Fe-TFTs are modeled using technology computer-aided design, comparing their performance. Compute-in-memory (CIM) architectures with SG and DG Fe-TFTs are investigated for deep neural networks (DNN) accelerators, revealing heat's detrimental effect on reliability and inference accuracy. DG Fe-TFTs exhibit about 4.6x higher throughput than SG Fe-TFTs. Additionally, thermal effects within the simulated M3D architecture are analyzed, noting reduced DNN accuracy to 81.11% and 67.85% for SG and DG Fe-TFTs, respectively. Furthermore, various cooling methods and their impact on CIM system temperature are demonstrated, offering insights for efficient thermal management strategies.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 8","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400019","citationCount":"0","resultStr":"{\"title\":\"Thermal Effects on Monolithic 3D Ferroelectric Transistors for Deep Neural Networks Performance\",\"authors\":\"Shubham Kumar,&nbsp;Yogesh Singh Chauhan,&nbsp;Hussam Amrouch\",\"doi\":\"10.1002/aisy.202400019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monolithic three-dimensional (M3D) integration advances integrated circuits by enhancing density and energy efficiency. Ferroelectric thin-film transistors (Fe-TFTs) attract attention for neuromorphic computing and back-end-of-the-line (BEOL) compatibility. However, M3D faces challenges like increased runtime temperatures due to limited heat dissipation, impacting system reliability. This work demonstrates the effect of temperature impact on single-gate (SG) Fe-TFT reliability. SG Fe-TFTs have limitations such as read-disturbance and small memory windows, constraining their use. To mitigate these, dual-gate (DG) Fe-TFTs are modeled using technology computer-aided design, comparing their performance. Compute-in-memory (CIM) architectures with SG and DG Fe-TFTs are investigated for deep neural networks (DNN) accelerators, revealing heat's detrimental effect on reliability and inference accuracy. DG Fe-TFTs exhibit about 4.6x higher throughput than SG Fe-TFTs. Additionally, thermal effects within the simulated M3D architecture are analyzed, noting reduced DNN accuracy to 81.11% and 67.85% for SG and DG Fe-TFTs, respectively. Furthermore, various cooling methods and their impact on CIM system temperature are demonstrated, offering insights for efficient thermal management strategies.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 8\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

单片三维(M3D)集成通过提高密度和能效推动了集成电路的发展。铁电薄膜晶体管(Fe-TFT)因其神经形态计算和后端(BEOL)兼容性而备受关注。然而,M3D 面临着一些挑战,如由于散热受限而导致运行时温度升高,影响系统可靠性。这项工作展示了温度对单栅(SG)Fe-TFT 可靠性的影响。SG Fe-TFT 具有读取干扰和内存窗口小等局限性,限制了其使用。为了缓解这些问题,我们使用计算机辅助设计技术对双栅(DG)Fe-TFT 进行了建模,并对其性能进行了比较。针对深度神经网络(DNN)加速器,研究了采用 SG 和 DG Fe-TFT 的内存计算(CIM)架构,揭示了热量对可靠性和推理准确性的不利影响。DG Fe-TFT 的吞吐量比 SG Fe-TFT 高出约 4.6 倍。此外,还分析了模拟 M3D 架构的热效应,发现 SG 和 DG Fe-TFT 的 DNN 精确度分别降低到 81.11% 和 67.85%。此外,还展示了各种冷却方法及其对 CIM 系统温度的影响,为高效热管理策略提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal Effects on Monolithic 3D Ferroelectric Transistors for Deep Neural Networks Performance

Monolithic three-dimensional (M3D) integration advances integrated circuits by enhancing density and energy efficiency. Ferroelectric thin-film transistors (Fe-TFTs) attract attention for neuromorphic computing and back-end-of-the-line (BEOL) compatibility. However, M3D faces challenges like increased runtime temperatures due to limited heat dissipation, impacting system reliability. This work demonstrates the effect of temperature impact on single-gate (SG) Fe-TFT reliability. SG Fe-TFTs have limitations such as read-disturbance and small memory windows, constraining their use. To mitigate these, dual-gate (DG) Fe-TFTs are modeled using technology computer-aided design, comparing their performance. Compute-in-memory (CIM) architectures with SG and DG Fe-TFTs are investigated for deep neural networks (DNN) accelerators, revealing heat's detrimental effect on reliability and inference accuracy. DG Fe-TFTs exhibit about 4.6x higher throughput than SG Fe-TFTs. Additionally, thermal effects within the simulated M3D architecture are analyzed, noting reduced DNN accuracy to 81.11% and 67.85% for SG and DG Fe-TFTs, respectively. Furthermore, various cooling methods and their impact on CIM system temperature are demonstrated, offering insights for efficient thermal management strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1