供应链和生产系统中的仿生调节

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-07-03 DOI:10.1002/aisy.202400049
Marc Thielen, Niclas Trube, Johannes M. Schneider, Malte von Ramin
{"title":"供应链和生产系统中的仿生调节","authors":"Marc Thielen,&nbsp;Niclas Trube,&nbsp;Johannes M. Schneider,&nbsp;Malte von Ramin","doi":"10.1002/aisy.202400049","DOIUrl":null,"url":null,"abstract":"<p>The production industry is challenged to become more flexible and efficient while coping with a variety of disruptive events, such as natural disasters, infrastructure blockages, or economic crises. From the individual station on a production line to the global supply chain, everything is connected, making regulation and control a complex task. Biological molecular processes, such as the metabolism of living organisms or the cell cycle, are also extremely complex processes that can be compared to industrial production processes, both of which involve a series of intermediate steps and products. Thanks to (self-)regulatory mechanisms that have evolved over time, these biological mechanisms are very efficient and robust in the face of perturbations. This article proposes an explanatory representation of these complex processes, considering both biological and technical aspects. The aim is to facilitate biomimetic transfer of biological regulation mechanisms into the technical domain. It presents concepts for biomimetic regulation of production lines and sourcing strategies and introduces a workflow for generating digital twins. This workflow is inspired by the cell cycle checkpoints, which ensure that only perfect copies of DNA are passed on during cell replication. By leveraging this understanding, the production industry can potentially improve its own processes and efficiency.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 9","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400049","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Regulation in Supply Chains and Production Systems\",\"authors\":\"Marc Thielen,&nbsp;Niclas Trube,&nbsp;Johannes M. Schneider,&nbsp;Malte von Ramin\",\"doi\":\"10.1002/aisy.202400049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The production industry is challenged to become more flexible and efficient while coping with a variety of disruptive events, such as natural disasters, infrastructure blockages, or economic crises. From the individual station on a production line to the global supply chain, everything is connected, making regulation and control a complex task. Biological molecular processes, such as the metabolism of living organisms or the cell cycle, are also extremely complex processes that can be compared to industrial production processes, both of which involve a series of intermediate steps and products. Thanks to (self-)regulatory mechanisms that have evolved over time, these biological mechanisms are very efficient and robust in the face of perturbations. This article proposes an explanatory representation of these complex processes, considering both biological and technical aspects. The aim is to facilitate biomimetic transfer of biological regulation mechanisms into the technical domain. It presents concepts for biomimetic regulation of production lines and sourcing strategies and introduces a workflow for generating digital twins. This workflow is inspired by the cell cycle checkpoints, which ensure that only perfect copies of DNA are passed on during cell replication. By leveraging this understanding, the production industry can potentially improve its own processes and efficiency.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400049\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在应对自然灾害、基础设施堵塞或经济危机等各种破坏性事件的同时,生产行业面临着提高灵活性和效率的挑战。从生产线上的单个工位到全球供应链,一切都是相互关联的,这使得监管和控制成为一项复杂的任务。生物分子过程,如生物体的新陈代谢或细胞周期,也是极其复杂的过程,可与工业生产过程相提并论,两者都涉及一系列中间步骤和产品。得益于长期演化的(自我)调控机制,这些生物机制在面对干扰时非常高效和稳健。本文从生物和技术两个方面,对这些复杂的过程提出了解释性的表述。其目的是促进生物调控机制向技术领域的仿生转移。文章提出了对生产线和采购策略进行生物仿真调节的概念,并介绍了生成数字孪生的工作流程。这一工作流程受到细胞周期检查点的启发,细胞周期检查点可确保在细胞复制过程中只传递完美的 DNA 副本。利用这一认识,生产行业有可能改进自身的流程和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomimetic Regulation in Supply Chains and Production Systems

The production industry is challenged to become more flexible and efficient while coping with a variety of disruptive events, such as natural disasters, infrastructure blockages, or economic crises. From the individual station on a production line to the global supply chain, everything is connected, making regulation and control a complex task. Biological molecular processes, such as the metabolism of living organisms or the cell cycle, are also extremely complex processes that can be compared to industrial production processes, both of which involve a series of intermediate steps and products. Thanks to (self-)regulatory mechanisms that have evolved over time, these biological mechanisms are very efficient and robust in the face of perturbations. This article proposes an explanatory representation of these complex processes, considering both biological and technical aspects. The aim is to facilitate biomimetic transfer of biological regulation mechanisms into the technical domain. It presents concepts for biomimetic regulation of production lines and sourcing strategies and introduces a workflow for generating digital twins. This workflow is inspired by the cell cycle checkpoints, which ensure that only perfect copies of DNA are passed on during cell replication. By leveraging this understanding, the production industry can potentially improve its own processes and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1