利用农副产品合成生物炭及其应用。热解温度对生物炭酸碱特性的影响

Phung Thi Lan, Vu Tran The Hien, Phan Đinh Khanh Nguyen, Le Minh Cam
{"title":"利用农副产品合成生物炭及其应用。热解温度对生物炭酸碱特性的影响","authors":"Phung Thi Lan, Vu Tran The Hien, Phan Đinh Khanh Nguyen, Le Minh Cam","doi":"10.62239/jca.2024.044","DOIUrl":null,"url":null,"abstract":"Biochar was synthesized from banana peels using the pyrolysis method in a nitrogen gas environment. The pyrolysis temperature ranged from 100°C to 500°C with a heating rate of 5°C per minute and a pyrolysis time of 1.5 hours. The influence of the pyrolysis temperature on the acid-base properties of the biochar surface was evaluated through characteristic SEM and BET measurements. Boehm titration showed a gradual decrease in the total acid functional groups and an increase in the total base functional groups with the increasing pyrolysis temperature. Methylene Blue (MB) was used as a model substance to investigate the adsorption properties of the synthesized biochar. The Langmuir and Freundlich models were employed to describe the adsorption equilibrium. The kinetics of MB adsorption followed a pseudo-second-order kinetic equation. The adsorption capacity of MB by biological charcoal was influenced by the acid-base properties of the material, indicating the impact of the pyrolysis temperature.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"54 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and application of biochar from agricultural by-products. Effect of pyrolysis temperature on the acid-base properties of biochar\",\"authors\":\"Phung Thi Lan, Vu Tran The Hien, Phan Đinh Khanh Nguyen, Le Minh Cam\",\"doi\":\"10.62239/jca.2024.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biochar was synthesized from banana peels using the pyrolysis method in a nitrogen gas environment. The pyrolysis temperature ranged from 100°C to 500°C with a heating rate of 5°C per minute and a pyrolysis time of 1.5 hours. The influence of the pyrolysis temperature on the acid-base properties of the biochar surface was evaluated through characteristic SEM and BET measurements. Boehm titration showed a gradual decrease in the total acid functional groups and an increase in the total base functional groups with the increasing pyrolysis temperature. Methylene Blue (MB) was used as a model substance to investigate the adsorption properties of the synthesized biochar. The Langmuir and Freundlich models were employed to describe the adsorption equilibrium. The kinetics of MB adsorption followed a pseudo-second-order kinetic equation. The adsorption capacity of MB by biological charcoal was influenced by the acid-base properties of the material, indicating the impact of the pyrolysis temperature.\",\"PeriodicalId\":23507,\"journal\":{\"name\":\"Vietnam Journal of Catalysis and Adsorption\",\"volume\":\"54 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Catalysis and Adsorption\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62239/jca.2024.044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62239/jca.2024.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在氮气环境中使用热解法从香蕉皮中合成生物炭。热解温度范围为 100°C 至 500°C,加热速度为每分钟 5°C,热解时间为 1.5 小时。热解温度对生物炭表面酸碱性质的影响是通过特征 SEM 和 BET 测量来评估的。波姆滴定显示,随着热解温度的升高,总酸官能团逐渐减少,总碱官能团逐渐增加。用亚甲蓝(MB)作为模型物质来研究合成生物炭的吸附特性。采用 Langmuir 和 Freundlich 模型来描述吸附平衡。甲基溴的吸附动力学遵循伪二阶动力学方程。生物炭对甲基溴的吸附能力受材料酸碱性质的影响,这表明热解温度也有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and application of biochar from agricultural by-products. Effect of pyrolysis temperature on the acid-base properties of biochar
Biochar was synthesized from banana peels using the pyrolysis method in a nitrogen gas environment. The pyrolysis temperature ranged from 100°C to 500°C with a heating rate of 5°C per minute and a pyrolysis time of 1.5 hours. The influence of the pyrolysis temperature on the acid-base properties of the biochar surface was evaluated through characteristic SEM and BET measurements. Boehm titration showed a gradual decrease in the total acid functional groups and an increase in the total base functional groups with the increasing pyrolysis temperature. Methylene Blue (MB) was used as a model substance to investigate the adsorption properties of the synthesized biochar. The Langmuir and Freundlich models were employed to describe the adsorption equilibrium. The kinetics of MB adsorption followed a pseudo-second-order kinetic equation. The adsorption capacity of MB by biological charcoal was influenced by the acid-base properties of the material, indicating the impact of the pyrolysis temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparation of graphene from polyethylene terephthalate (PET) bottle wastes and its use for the removal of Methylene blue from aqueous solution Synthesis and application of biochar from agricultural by-products. Effect of pyrolysis temperature on the acid-base properties of biochar Synthesized MgFe2O4 nanoparticles to remove Pb2+ from aqueous solution Fabrication of activated carbon from polyethylene terephthalate plastic waste (PET) and their application for the removal of organic dyes in aqueous solution by chemical method A novel adsorbent based electroplating sludge – rice husk char for removal of methylene blue and ciprofloxacin in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1