预测静水中人字形单气泡上升轨迹的理论模型

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chinese Journal of Chemical Engineering Pub Date : 2024-07-06 DOI:10.1016/j.cjche.2024.06.008
{"title":"预测静水中人字形单气泡上升轨迹的理论模型","authors":"","doi":"10.1016/j.cjche.2024.06.008","DOIUrl":null,"url":null,"abstract":"<div><p>The rising motion of single bubble in still liquid is a natural phenomenon, which has high theoretical research significance and engineering application prospect. Experimental observations and numerical simulations for prediction of the rising trajectory of a single bubble in still liquid are being carried out, while the concise but accurate theoretical or mechanism model is still not well developed. In this article, a theoretical model of a single bubble based on experimental observation of flow around bluff body is proposed to predict the rising trajectory of zigzagging bubbles in still water. The prediction correlation of bubble lateral movement frequency and bubble steer angle are established based on three degrees of freedom frame. The model has achieved good trajectory prediction effect in the bubble rising experiment. The average simulation time per unit moving time of bubble is 2.5 s.</p></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A theoretical model to predict the rising trajectory of single bubble with zigzagging path in still water\",\"authors\":\"\",\"doi\":\"10.1016/j.cjche.2024.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rising motion of single bubble in still liquid is a natural phenomenon, which has high theoretical research significance and engineering application prospect. Experimental observations and numerical simulations for prediction of the rising trajectory of a single bubble in still liquid are being carried out, while the concise but accurate theoretical or mechanism model is still not well developed. In this article, a theoretical model of a single bubble based on experimental observation of flow around bluff body is proposed to predict the rising trajectory of zigzagging bubbles in still water. The prediction correlation of bubble lateral movement frequency and bubble steer angle are established based on three degrees of freedom frame. The model has achieved good trajectory prediction effect in the bubble rising experiment. The average simulation time per unit moving time of bubble is 2.5 s.</p></div>\",\"PeriodicalId\":9966,\"journal\":{\"name\":\"Chinese Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1004954124002209\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124002209","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

静止液体中单个气泡的上升运动是一种自然现象,具有很高的理论研究意义和工程应用前景。预测静止液体中单个气泡上升轨迹的实验观测和数值模拟正在进行中,而简明而准确的理论或机理模型还没有很好地建立起来。本文基于崖体周围流动的实验观测,提出了单个气泡的理论模型,用于预测静水中 "之 "字形气泡的上升轨迹。基于三自由度框架,建立了气泡横向运动频率和气泡转向角的预测相关性。该模型在气泡上升实验中取得了良好的轨迹预测效果。气泡单位运动时间的平均模拟时间为 2.5 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A theoretical model to predict the rising trajectory of single bubble with zigzagging path in still water

The rising motion of single bubble in still liquid is a natural phenomenon, which has high theoretical research significance and engineering application prospect. Experimental observations and numerical simulations for prediction of the rising trajectory of a single bubble in still liquid are being carried out, while the concise but accurate theoretical or mechanism model is still not well developed. In this article, a theoretical model of a single bubble based on experimental observation of flow around bluff body is proposed to predict the rising trajectory of zigzagging bubbles in still water. The prediction correlation of bubble lateral movement frequency and bubble steer angle are established based on three degrees of freedom frame. The model has achieved good trajectory prediction effect in the bubble rising experiment. The average simulation time per unit moving time of bubble is 2.5 s.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Chemical Engineering
Chinese Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
6.60
自引率
5.30%
发文量
4309
审稿时长
31 days
期刊介绍: The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors. The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.
期刊最新文献
Stochastic neuro-swarming intelligence paradigm for the analysis of magneto-hydrodynamic Prandtl–Eyring fluid flow with diffusive magnetic layers effect over an elongated surface Reaction network design and hybrid modeling of S Zorb Improving the accuracy of mechanistic models for dynamic batch distillation enabled by neural network: An industrial plant case Construction of direct-Z-scheme heterojunction photocatalyst of g-C3N4/Ti3C2/TiO2 composite and its degradation behavior for dyes of Rhodamine B Influences of fractional separation on the structure and reactivity of wheat straw cellulose for producing 5-hydroxymethylfurfural
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1