{"title":"使用 R134a/DMF 作为工作对的新型无泵吸收式制冷系统的实验研究","authors":"","doi":"10.1016/j.ijrefrig.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>To address the challenges related to corrosion, sealing, additional electrical energy consumption, and the limited adaptability imposed by the electrically-driven solution pump to small-scale absorption refrigeration cycle (ARC) system, a pumpless module based on the switching valves method (SVM) is designed and constructed for an ARC system. The pumpless operation is realized based on thermal-gravity-driven mechanism by employing a corresponding valve-assembly among three vessels, which effectively substitutes for the electrical solution pump. R134a/DMF is employed as the working pair to maintain the necessary pressure differential for efficient solution pumping process. The overall performance of the system is studied. Experimental results show that the system operating parameters fluctuate periodically, and the fluctuation induces periodic variations in heat input and cooling capacity in the range of 0.95∼1.76 kW and 0.27∼0.79 kW, respectively. For the system the maximum cooling capacity of 0.79 kW and the average cooling capacity of 0.33 kW are achieved under the conditions of valve opening of 32°, average hot oil temperature of 116.9°C, heat sink temperature of 30.9°C, cooling source temperature of 25.9°C, and cycle time of 300 s, while the average COP of 0.28 is achieved at the cycle time of 420 s under the same conditions. The pumpless module is validated feasible as a promising alternative to solution pump, especially for small-scale system.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on a novel pumpless absorption refrigeration system using R134a/DMF as working pair\",\"authors\":\"\",\"doi\":\"10.1016/j.ijrefrig.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To address the challenges related to corrosion, sealing, additional electrical energy consumption, and the limited adaptability imposed by the electrically-driven solution pump to small-scale absorption refrigeration cycle (ARC) system, a pumpless module based on the switching valves method (SVM) is designed and constructed for an ARC system. The pumpless operation is realized based on thermal-gravity-driven mechanism by employing a corresponding valve-assembly among three vessels, which effectively substitutes for the electrical solution pump. R134a/DMF is employed as the working pair to maintain the necessary pressure differential for efficient solution pumping process. The overall performance of the system is studied. Experimental results show that the system operating parameters fluctuate periodically, and the fluctuation induces periodic variations in heat input and cooling capacity in the range of 0.95∼1.76 kW and 0.27∼0.79 kW, respectively. For the system the maximum cooling capacity of 0.79 kW and the average cooling capacity of 0.33 kW are achieved under the conditions of valve opening of 32°, average hot oil temperature of 116.9°C, heat sink temperature of 30.9°C, cooling source temperature of 25.9°C, and cycle time of 300 s, while the average COP of 0.28 is achieved at the cycle time of 420 s under the same conditions. The pumpless module is validated feasible as a promising alternative to solution pump, especially for small-scale system.</p></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002354\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002354","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental study on a novel pumpless absorption refrigeration system using R134a/DMF as working pair
To address the challenges related to corrosion, sealing, additional electrical energy consumption, and the limited adaptability imposed by the electrically-driven solution pump to small-scale absorption refrigeration cycle (ARC) system, a pumpless module based on the switching valves method (SVM) is designed and constructed for an ARC system. The pumpless operation is realized based on thermal-gravity-driven mechanism by employing a corresponding valve-assembly among three vessels, which effectively substitutes for the electrical solution pump. R134a/DMF is employed as the working pair to maintain the necessary pressure differential for efficient solution pumping process. The overall performance of the system is studied. Experimental results show that the system operating parameters fluctuate periodically, and the fluctuation induces periodic variations in heat input and cooling capacity in the range of 0.95∼1.76 kW and 0.27∼0.79 kW, respectively. For the system the maximum cooling capacity of 0.79 kW and the average cooling capacity of 0.33 kW are achieved under the conditions of valve opening of 32°, average hot oil temperature of 116.9°C, heat sink temperature of 30.9°C, cooling source temperature of 25.9°C, and cycle time of 300 s, while the average COP of 0.28 is achieved at the cycle time of 420 s under the same conditions. The pumpless module is validated feasible as a promising alternative to solution pump, especially for small-scale system.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.