Mohamed Y. Abdelfattah , Nouf Al Humayyani , Fahad K. Alwthinani , Abdulrahman H. Alzahrani , Abdulmajeed O. Alotaibi , Mohamed Yousef , Akram Sayed Ahmed , Ahmed Ali
{"title":"对 3D 打印义齿材料与 CAD/CAM 铣削义齿材料的机械和光学特性进行体外评估","authors":"Mohamed Y. Abdelfattah , Nouf Al Humayyani , Fahad K. Alwthinani , Abdulrahman H. Alzahrani , Abdulmajeed O. Alotaibi , Mohamed Yousef , Akram Sayed Ahmed , Ahmed Ali","doi":"10.1016/j.sdentj.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>This laboratory research aimed to assess the Flexural strength, fracture toughness, Volumetric wear and optical properties of various recent 3D-printed denture tooth materials and compare them to CAD/CAM milled materials. Four 3D-printed denture tooth materials (Lucitone Tooth, OnX, Flexcera Ultra +, and VarseoSmile Crown Plus) and one CAD/CAM milled denture teeth material (Ivotion Dent) were used to fabricate fifteen specimens for each material (with total no. of 300 specimens). Tests were conducted according to ISO standards to assess flexural strength, fracture toughness, color staining, and volumetric wear. All materials were printed, washed, cured, or milled following the manufacturer’s instructions. Flexural strength and fracture toughness values were obtained by a universal testing machine. Volumetric wear was evaluated using a non-contact optical profilometer. Color stability outcomes were obtained via a spectrophotometer for determining L*a*b* values, with color change (ΔE2000) based on the CIEDE2000 formula. Data were analyzed using one-way ANOVA and Tukey post-hoc analysis (α = 0.05). All 3D-printed materials exhibited higher flexural strength values than the milled material (p < 0.05). For fracture toughness, two of the 3D-printed materials showed higher values than the milled material, while the other two had lower values. Insignificant variances in volumetric wear were detected between the materials (p > 0.05). Color staining results varied, with milled materials generally demonstrating better-staining resistance compared to the 3D-printed materials. 3D-printed denture tooth materials exhibit good mechanical and optical properties, presenting a cost-effective and efficient alternative to CAD/CAM milled materials for denture tooth fabrication.</p></div>","PeriodicalId":47246,"journal":{"name":"Saudi Dental Journal","volume":"36 9","pages":"Pages 1227-1232"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1013905224002013/pdfft?md5=e67ebaa670c6b090a5bcd4e00c531e40&pid=1-s2.0-S1013905224002013-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In vitro evaluation of the mechanical and optical properties of 3D printed vs CAD/CAM milled denture teeth materials\",\"authors\":\"Mohamed Y. Abdelfattah , Nouf Al Humayyani , Fahad K. Alwthinani , Abdulrahman H. Alzahrani , Abdulmajeed O. Alotaibi , Mohamed Yousef , Akram Sayed Ahmed , Ahmed Ali\",\"doi\":\"10.1016/j.sdentj.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This laboratory research aimed to assess the Flexural strength, fracture toughness, Volumetric wear and optical properties of various recent 3D-printed denture tooth materials and compare them to CAD/CAM milled materials. Four 3D-printed denture tooth materials (Lucitone Tooth, OnX, Flexcera Ultra +, and VarseoSmile Crown Plus) and one CAD/CAM milled denture teeth material (Ivotion Dent) were used to fabricate fifteen specimens for each material (with total no. of 300 specimens). Tests were conducted according to ISO standards to assess flexural strength, fracture toughness, color staining, and volumetric wear. All materials were printed, washed, cured, or milled following the manufacturer’s instructions. Flexural strength and fracture toughness values were obtained by a universal testing machine. Volumetric wear was evaluated using a non-contact optical profilometer. Color stability outcomes were obtained via a spectrophotometer for determining L*a*b* values, with color change (ΔE2000) based on the CIEDE2000 formula. Data were analyzed using one-way ANOVA and Tukey post-hoc analysis (α = 0.05). All 3D-printed materials exhibited higher flexural strength values than the milled material (p < 0.05). For fracture toughness, two of the 3D-printed materials showed higher values than the milled material, while the other two had lower values. Insignificant variances in volumetric wear were detected between the materials (p > 0.05). Color staining results varied, with milled materials generally demonstrating better-staining resistance compared to the 3D-printed materials. 3D-printed denture tooth materials exhibit good mechanical and optical properties, presenting a cost-effective and efficient alternative to CAD/CAM milled materials for denture tooth fabrication.</p></div>\",\"PeriodicalId\":47246,\"journal\":{\"name\":\"Saudi Dental Journal\",\"volume\":\"36 9\",\"pages\":\"Pages 1227-1232\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1013905224002013/pdfft?md5=e67ebaa670c6b090a5bcd4e00c531e40&pid=1-s2.0-S1013905224002013-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Saudi Dental Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1013905224002013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Dental Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1013905224002013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
In vitro evaluation of the mechanical and optical properties of 3D printed vs CAD/CAM milled denture teeth materials
This laboratory research aimed to assess the Flexural strength, fracture toughness, Volumetric wear and optical properties of various recent 3D-printed denture tooth materials and compare them to CAD/CAM milled materials. Four 3D-printed denture tooth materials (Lucitone Tooth, OnX, Flexcera Ultra +, and VarseoSmile Crown Plus) and one CAD/CAM milled denture teeth material (Ivotion Dent) were used to fabricate fifteen specimens for each material (with total no. of 300 specimens). Tests were conducted according to ISO standards to assess flexural strength, fracture toughness, color staining, and volumetric wear. All materials were printed, washed, cured, or milled following the manufacturer’s instructions. Flexural strength and fracture toughness values were obtained by a universal testing machine. Volumetric wear was evaluated using a non-contact optical profilometer. Color stability outcomes were obtained via a spectrophotometer for determining L*a*b* values, with color change (ΔE2000) based on the CIEDE2000 formula. Data were analyzed using one-way ANOVA and Tukey post-hoc analysis (α = 0.05). All 3D-printed materials exhibited higher flexural strength values than the milled material (p < 0.05). For fracture toughness, two of the 3D-printed materials showed higher values than the milled material, while the other two had lower values. Insignificant variances in volumetric wear were detected between the materials (p > 0.05). Color staining results varied, with milled materials generally demonstrating better-staining resistance compared to the 3D-printed materials. 3D-printed denture tooth materials exhibit good mechanical and optical properties, presenting a cost-effective and efficient alternative to CAD/CAM milled materials for denture tooth fabrication.
期刊介绍:
Saudi Dental Journal is an English language, peer-reviewed scholarly publication in the area of dentistry. Saudi Dental Journal publishes original research and reviews on, but not limited to: • dental disease • clinical trials • dental equipment • new and experimental techniques • epidemiology and oral health • restorative dentistry • periodontology • endodontology • prosthodontics • paediatric dentistry • orthodontics and dental education Saudi Dental Journal is the official publication of the Saudi Dental Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.