用于纤维素酶解的软化水果纤维素酶的特征

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED Carbohydrate Polymers Pub Date : 2024-07-14 DOI:10.1016/j.carbpol.2024.122493
{"title":"用于纤维素酶解的软化水果纤维素酶的特征","authors":"","doi":"10.1016/j.carbpol.2024.122493","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose is a major renewable resource for a wide variety of sustainable industrial products. However, for its utilization, finding new efficient enzymes for plant cell wall depolymerization is crucial. In addition to microbial sources, cellulases also exist in plants, however, are less studied. Fleshy fruit ripening includes enzymatic cell wall hydrolysis, leading to tissue softening. Therefore, bilberry (<em>Vaccinium myrtillus</em> L.), which produces small fruits that undergo extensive and rapid softening, was selected to explore cellulases of plant origin. We identified 20 glycoside hydrolase family 9 (GH9) cellulases from a recently sequenced bilberry genome, including four of which showed fruit ripening-specific expression and could be associated with fruit softening based on phylogenetic, transcriptomic and gene expression analyses. These four cellulases were secreted enzymes: two B-types and two C-types with a carbohydrate binding module 49. For functional characterization, these four cellulases were expressed in <em>Pichia pastoris</em>. All recombinant enzymes demonstrated glucanase activity toward cellulose and hemicellulose substrates. Particularly, VmGH9C1 demonstrated high activity and ability to degrade cellulose, xyloglucan, and glucomannan. In addition, all the enzymes retained activity under wide pH (6–10) and temperature ranges (optimum 70 °C), revealing the potential applications of plant GH9 cellulases in the industrial bioprocessing of lignocellulose.</p></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0144861724007197/pdfft?md5=0dd7b9602782a82d515a0ae0ffe3a0e1&pid=1-s2.0-S0144861724007197-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterization of cellulases from softening fruit for enzymatic depolymerization of cellulose\",\"authors\":\"\",\"doi\":\"10.1016/j.carbpol.2024.122493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cellulose is a major renewable resource for a wide variety of sustainable industrial products. However, for its utilization, finding new efficient enzymes for plant cell wall depolymerization is crucial. In addition to microbial sources, cellulases also exist in plants, however, are less studied. Fleshy fruit ripening includes enzymatic cell wall hydrolysis, leading to tissue softening. Therefore, bilberry (<em>Vaccinium myrtillus</em> L.), which produces small fruits that undergo extensive and rapid softening, was selected to explore cellulases of plant origin. We identified 20 glycoside hydrolase family 9 (GH9) cellulases from a recently sequenced bilberry genome, including four of which showed fruit ripening-specific expression and could be associated with fruit softening based on phylogenetic, transcriptomic and gene expression analyses. These four cellulases were secreted enzymes: two B-types and two C-types with a carbohydrate binding module 49. For functional characterization, these four cellulases were expressed in <em>Pichia pastoris</em>. All recombinant enzymes demonstrated glucanase activity toward cellulose and hemicellulose substrates. Particularly, VmGH9C1 demonstrated high activity and ability to degrade cellulose, xyloglucan, and glucomannan. In addition, all the enzymes retained activity under wide pH (6–10) and temperature ranges (optimum 70 °C), revealing the potential applications of plant GH9 cellulases in the industrial bioprocessing of lignocellulose.</p></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0144861724007197/pdfft?md5=0dd7b9602782a82d515a0ae0ffe3a0e1&pid=1-s2.0-S0144861724007197-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724007197\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724007197","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

纤维素是一种主要的可再生资源,可用于生产各种可持续工业产品。然而,要利用纤维素,找到新的高效植物细胞壁解聚酶至关重要。除了微生物来源,植物中也存在纤维素酶,但研究较少。肉质水果的成熟过程包括酶促细胞壁水解,导致组织软化。因此,我们选择了山桑子(Vaccinium myrtillus L.)来探索植物来源的纤维素酶。我们从最近测序的山桑子基因组中发现了 20 种糖苷水解酶家族 9(GH9)纤维素酶,其中 4 种表现出果实成熟特异性表达,根据系统发生学、转录组学和基因表达分析,它们可能与果实软化有关。这四种纤维素酶是分泌酶:两种 B 型和两种 C 型,带有碳水化合物结合模块 49。为了进行功能表征,这四种纤维素酶在 Pichia pastoris 中进行了表达。所有重组酶都对纤维素和半纤维素底物具有葡聚糖酶活性。特别是 VmGH9C1 表现出很高的活性和降解纤维素、木聚糖和葡甘露聚糖的能力。此外,所有酶都能在较宽的 pH 值(6-10)和温度范围(最佳温度 70 °C)内保持活性,这揭示了植物 GH9 纤维素酶在木质纤维素工业生物加工中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of cellulases from softening fruit for enzymatic depolymerization of cellulose

Cellulose is a major renewable resource for a wide variety of sustainable industrial products. However, for its utilization, finding new efficient enzymes for plant cell wall depolymerization is crucial. In addition to microbial sources, cellulases also exist in plants, however, are less studied. Fleshy fruit ripening includes enzymatic cell wall hydrolysis, leading to tissue softening. Therefore, bilberry (Vaccinium myrtillus L.), which produces small fruits that undergo extensive and rapid softening, was selected to explore cellulases of plant origin. We identified 20 glycoside hydrolase family 9 (GH9) cellulases from a recently sequenced bilberry genome, including four of which showed fruit ripening-specific expression and could be associated with fruit softening based on phylogenetic, transcriptomic and gene expression analyses. These four cellulases were secreted enzymes: two B-types and two C-types with a carbohydrate binding module 49. For functional characterization, these four cellulases were expressed in Pichia pastoris. All recombinant enzymes demonstrated glucanase activity toward cellulose and hemicellulose substrates. Particularly, VmGH9C1 demonstrated high activity and ability to degrade cellulose, xyloglucan, and glucomannan. In addition, all the enzymes retained activity under wide pH (6–10) and temperature ranges (optimum 70 °C), revealing the potential applications of plant GH9 cellulases in the industrial bioprocessing of lignocellulose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
期刊最新文献
Editorial Board Targeting gut microbiota by starch molecular size and chain-length distribution to produce various short-chain fatty acids Impact of waxy protein deletions on the crystalline structure and physicochemical properties of wheat V-type resistant starch (RS5) Preparation and characterization of polymeric cellulose wood adhesive with excellent bonding properties and water resistance Micellar structure of decenyl succinic anhydride modified pullulan with degree of substitution dependence in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1