{"title":"移动边缘计算的节能联合资源分配策略","authors":"Liang Wei","doi":"10.1016/j.phycom.2024.102405","DOIUrl":null,"url":null,"abstract":"<div><p>Mobile Cloud-Edge Collaboration (MCEC) views in the main of converting the site for user electronics. By naturally integrating mobile devices with cloud computing (CC) resources at the edge of the scheme, this mutual paradigm improves storage, processing, and communication capabilities. This cooperation increases the performance of user electronics, delivering users responsive and resource-efficient knowledge. Offloading in Mobile Cloud-Edge Collaboration (MCEC) is a strategic device that recovers computational efficiency and resource energy for mobile devices. By reasonably moving computation tasks from mobile devices to the edge or cloud servers, offloading declines the load on the limited processing and energy capabilities of mobile devices. This joint method influences the stable computing power and storage aptitude accessible in the cloud-edge structure, confirming that resource-intensive uses like complex data processing or machine learning (ML) tasks can be implemented professionally. Offloading not only increases the receptiveness and performance of mobile users but also contributes to energy conservation, extending the battery time of mobile devices. This study proposes an African Vultures Optimizer algorithm-based Offloading Strategy for Mobile Cloud-Edge Collaboration (AVOAOS-MCEC) approach for consumer electronics. The AVOAOS-MCEC technique is based on the nature of AVOA is a new nature-based system, which is inspired by the unusual behavior of African vultures in foraging and navigation. In addition, the AVOAOS-MCEC technique designs a task offloading process to reduce the total energy utilization with the fulfillment of capacity and delay requirements. The experimental validation of the AVOAOS-MCEC method is verified utilizing distinct measures. An extensive comparison study stated that the AVOAOS-MCEC technique outperforms the other models in terms of several performance measures.</p></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"67 ","pages":"Article 102405"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An energy-saving joint resource allocation strategy for mobile edge computing\",\"authors\":\"Liang Wei\",\"doi\":\"10.1016/j.phycom.2024.102405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mobile Cloud-Edge Collaboration (MCEC) views in the main of converting the site for user electronics. By naturally integrating mobile devices with cloud computing (CC) resources at the edge of the scheme, this mutual paradigm improves storage, processing, and communication capabilities. This cooperation increases the performance of user electronics, delivering users responsive and resource-efficient knowledge. Offloading in Mobile Cloud-Edge Collaboration (MCEC) is a strategic device that recovers computational efficiency and resource energy for mobile devices. By reasonably moving computation tasks from mobile devices to the edge or cloud servers, offloading declines the load on the limited processing and energy capabilities of mobile devices. This joint method influences the stable computing power and storage aptitude accessible in the cloud-edge structure, confirming that resource-intensive uses like complex data processing or machine learning (ML) tasks can be implemented professionally. Offloading not only increases the receptiveness and performance of mobile users but also contributes to energy conservation, extending the battery time of mobile devices. This study proposes an African Vultures Optimizer algorithm-based Offloading Strategy for Mobile Cloud-Edge Collaboration (AVOAOS-MCEC) approach for consumer electronics. The AVOAOS-MCEC technique is based on the nature of AVOA is a new nature-based system, which is inspired by the unusual behavior of African vultures in foraging and navigation. In addition, the AVOAOS-MCEC technique designs a task offloading process to reduce the total energy utilization with the fulfillment of capacity and delay requirements. The experimental validation of the AVOAOS-MCEC method is verified utilizing distinct measures. An extensive comparison study stated that the AVOAOS-MCEC technique outperforms the other models in terms of several performance measures.</p></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"67 \",\"pages\":\"Article 102405\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187449072400123X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187449072400123X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An energy-saving joint resource allocation strategy for mobile edge computing
Mobile Cloud-Edge Collaboration (MCEC) views in the main of converting the site for user electronics. By naturally integrating mobile devices with cloud computing (CC) resources at the edge of the scheme, this mutual paradigm improves storage, processing, and communication capabilities. This cooperation increases the performance of user electronics, delivering users responsive and resource-efficient knowledge. Offloading in Mobile Cloud-Edge Collaboration (MCEC) is a strategic device that recovers computational efficiency and resource energy for mobile devices. By reasonably moving computation tasks from mobile devices to the edge or cloud servers, offloading declines the load on the limited processing and energy capabilities of mobile devices. This joint method influences the stable computing power and storage aptitude accessible in the cloud-edge structure, confirming that resource-intensive uses like complex data processing or machine learning (ML) tasks can be implemented professionally. Offloading not only increases the receptiveness and performance of mobile users but also contributes to energy conservation, extending the battery time of mobile devices. This study proposes an African Vultures Optimizer algorithm-based Offloading Strategy for Mobile Cloud-Edge Collaboration (AVOAOS-MCEC) approach for consumer electronics. The AVOAOS-MCEC technique is based on the nature of AVOA is a new nature-based system, which is inspired by the unusual behavior of African vultures in foraging and navigation. In addition, the AVOAOS-MCEC technique designs a task offloading process to reduce the total energy utilization with the fulfillment of capacity and delay requirements. The experimental validation of the AVOAOS-MCEC method is verified utilizing distinct measures. An extensive comparison study stated that the AVOAOS-MCEC technique outperforms the other models in terms of several performance measures.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.