{"title":"超市制冷负荷的数据驱动建模 - 三家欧洲超市的案例研究","authors":"","doi":"10.1016/j.ijrefrig.2024.06.027","DOIUrl":null,"url":null,"abstract":"<div><p>When investigating supermarket refrigeration systems, it is essential to consider the refrigeration load as it directly affects the required compressor capacity and energy consumption. Therefore, it is important to have knowledge of the refrigeration load and its main influencing factors.</p><p>Direct usage of data for the refrigeration load in a whole-year energy simulation can present significant challenges. This is partly due to long lead times for data collection and the challenges posed by missing data. As a result, often there is no complete data set of the refrigeration load for the whole-year. Therefore, a mathematical model can serve as a tool to interpolate and extrapolate the refrigeration load over the course of a year. The model is not intended for transfer to other locations.</p><p>This paper begins with a overview of correlations found in the literature, followed by the development of an improved model that accounts for the impact of ambient temperature and time on the refrigeration load. Additionally, a novel approach using a neural network is proposed as a second model. Both models are then applied to data from three supermarkets in Europe and the model performance is evaluated.</p><p>Both models performed acceptably in representing the refrigeration load of all three supermarkets. Especially including the influence of time of day into the first model significantly improves the prediction accuracy. The neural network has the highest prediction performance and can improve the prediction performance by 40% over the improved literature model.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0140700724002305/pdfft?md5=da149c3ae39f30ac2eb88146fd111062&pid=1-s2.0-S0140700724002305-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Data-driven modeling of the refrigeration load in supermarkets — A case study on three European supermarkets\",\"authors\":\"\",\"doi\":\"10.1016/j.ijrefrig.2024.06.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When investigating supermarket refrigeration systems, it is essential to consider the refrigeration load as it directly affects the required compressor capacity and energy consumption. Therefore, it is important to have knowledge of the refrigeration load and its main influencing factors.</p><p>Direct usage of data for the refrigeration load in a whole-year energy simulation can present significant challenges. This is partly due to long lead times for data collection and the challenges posed by missing data. As a result, often there is no complete data set of the refrigeration load for the whole-year. Therefore, a mathematical model can serve as a tool to interpolate and extrapolate the refrigeration load over the course of a year. The model is not intended for transfer to other locations.</p><p>This paper begins with a overview of correlations found in the literature, followed by the development of an improved model that accounts for the impact of ambient temperature and time on the refrigeration load. Additionally, a novel approach using a neural network is proposed as a second model. Both models are then applied to data from three supermarkets in Europe and the model performance is evaluated.</p><p>Both models performed acceptably in representing the refrigeration load of all three supermarkets. Especially including the influence of time of day into the first model significantly improves the prediction accuracy. The neural network has the highest prediction performance and can improve the prediction performance by 40% over the improved literature model.</p></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002305/pdfft?md5=da149c3ae39f30ac2eb88146fd111062&pid=1-s2.0-S0140700724002305-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002305\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002305","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Data-driven modeling of the refrigeration load in supermarkets — A case study on three European supermarkets
When investigating supermarket refrigeration systems, it is essential to consider the refrigeration load as it directly affects the required compressor capacity and energy consumption. Therefore, it is important to have knowledge of the refrigeration load and its main influencing factors.
Direct usage of data for the refrigeration load in a whole-year energy simulation can present significant challenges. This is partly due to long lead times for data collection and the challenges posed by missing data. As a result, often there is no complete data set of the refrigeration load for the whole-year. Therefore, a mathematical model can serve as a tool to interpolate and extrapolate the refrigeration load over the course of a year. The model is not intended for transfer to other locations.
This paper begins with a overview of correlations found in the literature, followed by the development of an improved model that accounts for the impact of ambient temperature and time on the refrigeration load. Additionally, a novel approach using a neural network is proposed as a second model. Both models are then applied to data from three supermarkets in Europe and the model performance is evaluated.
Both models performed acceptably in representing the refrigeration load of all three supermarkets. Especially including the influence of time of day into the first model significantly improves the prediction accuracy. The neural network has the highest prediction performance and can improve the prediction performance by 40% over the improved literature model.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.