利用随机森林和决策树为免疫疗法和医疗分类选择高效特征

Ahsanullah Yunas Mahmoud
{"title":"利用随机森林和决策树为免疫疗法和医疗分类选择高效特征","authors":"Ahsanullah Yunas Mahmoud","doi":"10.1016/j.ibmed.2024.100151","DOIUrl":null,"url":null,"abstract":"<div><p>Immunotherapy is an important topic in healthcare as it affects patients' treatments for breast cancer, diabetes, and immunotherapy. However, immunotherapy for warts is less representative because of the lack of data. Machine learning is frequently utilised for treatment diagnosis by converting raw immunotherapy data into useful insights. Efficient classification of immunotherapy treatments is crucial for a productive diagnosis. This study considers immunotherapy with a data-driven and ’less is more perspective’. Despite using a portion of the available imbalance and complex data, the process of diagnosis of immunotherapy treatment is made reasonably precise by considering the parameters of accuracy, sensitivity, and specificity. The contribution of this study is focused on ”more is less” feature selection, which states that approximately 80 % of the effects or results of a system are caused by 20 % of the inputs. The features that contribute most to the classification of immunotherapy treatments are prioritised. This study proposes the implementation of Random Forest and Decision Trees for the classification of immunotherapy treatments. The relevant experimental medical data are explored as a case study. The experiments are conducted using Weka and Python data analysis tools, performing data preprocessing, class balancing, and feature selection. Random Forest performed better than the Decision Trees. By Applying Random Forest and utilising only one feature (time) as an input variable, a classification accuracy of 88.88 %, sensitivity of 95.45 %, and specificity of 60 % are attained. By using 12.5 % of the dataset, when implementing Random Forest together with ordinary feature selection, the diagnosis of immunotherapy treatments is become more efficient, despite using a portion of data features reasonable results are obtained.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100151"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000188/pdfft?md5=e93dc97987b02f29f0f70f8ab813e2a6&pid=1-s2.0-S2666521224000188-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel efficient feature selection: Classification of medical and immunotherapy treatments utilising Random Forest and Decision Trees\",\"authors\":\"Ahsanullah Yunas Mahmoud\",\"doi\":\"10.1016/j.ibmed.2024.100151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Immunotherapy is an important topic in healthcare as it affects patients' treatments for breast cancer, diabetes, and immunotherapy. However, immunotherapy for warts is less representative because of the lack of data. Machine learning is frequently utilised for treatment diagnosis by converting raw immunotherapy data into useful insights. Efficient classification of immunotherapy treatments is crucial for a productive diagnosis. This study considers immunotherapy with a data-driven and ’less is more perspective’. Despite using a portion of the available imbalance and complex data, the process of diagnosis of immunotherapy treatment is made reasonably precise by considering the parameters of accuracy, sensitivity, and specificity. The contribution of this study is focused on ”more is less” feature selection, which states that approximately 80 % of the effects or results of a system are caused by 20 % of the inputs. The features that contribute most to the classification of immunotherapy treatments are prioritised. This study proposes the implementation of Random Forest and Decision Trees for the classification of immunotherapy treatments. The relevant experimental medical data are explored as a case study. The experiments are conducted using Weka and Python data analysis tools, performing data preprocessing, class balancing, and feature selection. Random Forest performed better than the Decision Trees. By Applying Random Forest and utilising only one feature (time) as an input variable, a classification accuracy of 88.88 %, sensitivity of 95.45 %, and specificity of 60 % are attained. By using 12.5 % of the dataset, when implementing Random Forest together with ordinary feature selection, the diagnosis of immunotherapy treatments is become more efficient, despite using a portion of data features reasonable results are obtained.</p></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"10 \",\"pages\":\"Article 100151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000188/pdfft?md5=e93dc97987b02f29f0f70f8ab813e2a6&pid=1-s2.0-S2666521224000188-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

免疫疗法是医疗保健领域的一个重要课题,因为它影响着患者对乳腺癌、糖尿病和免疫疗法的治疗。然而,由于缺乏数据,尖锐湿疣的免疫疗法不太具有代表性。通过将原始免疫疗法数据转化为有用的见解,机器学习经常被用于治疗诊断。免疫疗法的有效分类对于有效诊断至关重要。本研究从数据驱动和 "少即是多 "的角度考虑免疫疗法。尽管使用了部分现有的不平衡和复杂数据,但通过考虑准确性、灵敏度和特异性等参数,免疫疗法的诊断过程变得相当精确。本研究的贡献主要集中在 "多即是少 "的特征选择上,即一个系统大约 80% 的效果或结果是由 20% 的输入造成的。对免疫疗法分类贡献最大的特征将被优先考虑。本研究提出采用随机森林和决策树对免疫疗法进行分类。相关的医学实验数据将作为案例进行研究。实验使用 Weka 和 Python 数据分析工具进行数据预处理、类平衡和特征选择。随机森林的表现优于决策树。通过应用随机森林并只使用一个特征(时间)作为输入变量,分类准确率达到 88.88 %,灵敏度达到 95.45 %,特异性达到 60 %。通过使用 12.5% 的数据集,在使用随机森林和普通特征选择时,免疫疗法的诊断变得更加有效,尽管使用了部分数据特征,但仍获得了合理的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel efficient feature selection: Classification of medical and immunotherapy treatments utilising Random Forest and Decision Trees

Immunotherapy is an important topic in healthcare as it affects patients' treatments for breast cancer, diabetes, and immunotherapy. However, immunotherapy for warts is less representative because of the lack of data. Machine learning is frequently utilised for treatment diagnosis by converting raw immunotherapy data into useful insights. Efficient classification of immunotherapy treatments is crucial for a productive diagnosis. This study considers immunotherapy with a data-driven and ’less is more perspective’. Despite using a portion of the available imbalance and complex data, the process of diagnosis of immunotherapy treatment is made reasonably precise by considering the parameters of accuracy, sensitivity, and specificity. The contribution of this study is focused on ”more is less” feature selection, which states that approximately 80 % of the effects or results of a system are caused by 20 % of the inputs. The features that contribute most to the classification of immunotherapy treatments are prioritised. This study proposes the implementation of Random Forest and Decision Trees for the classification of immunotherapy treatments. The relevant experimental medical data are explored as a case study. The experiments are conducted using Weka and Python data analysis tools, performing data preprocessing, class balancing, and feature selection. Random Forest performed better than the Decision Trees. By Applying Random Forest and utilising only one feature (time) as an input variable, a classification accuracy of 88.88 %, sensitivity of 95.45 %, and specificity of 60 % are attained. By using 12.5 % of the dataset, when implementing Random Forest together with ordinary feature selection, the diagnosis of immunotherapy treatments is become more efficient, despite using a portion of data features reasonable results are obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1