用氨基硅烷对磷酸化纤维素纤维进行硅烷化处理

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED Carbohydrate Polymers Pub Date : 2024-07-16 DOI:10.1016/j.carbpol.2024.122500
{"title":"用氨基硅烷对磷酸化纤维素纤维进行硅烷化处理","authors":"","doi":"10.1016/j.carbpol.2024.122500","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, phosphorylated cellulosic fibers were functionalized with an aminosilane ((3-aminopropyl)triethoxysilane, APTES) using a simple and economical method. Several characterization were performed to determine the types of bonds between phosphorylated fibers and grafted APTES. The thermal behavior, hydrophobicity and surface charge variation as a function of pH of the multifunctional cellulose fibers were determined.</p><p>Results demonstrate that APTES should proceed through Si-O-C, and possibly Si-O-P, covalent bonds with cellulose although the dimerization of silane through Si-O-Si bonds has also been observed. The terminal amino groups are expected to be partially involved in hydrogen bonds with phosphate hydroxyl groups found at phosphorylated cellulose fiber surface, causing a pulling in the configuration of the grafted APTES. The two chemical modifications proposed in this work do not significantly modify the morphology of cellulose fibers. XRD analysis also shows that the crystal structure of the phosphorylated fibers did not change after functionalization with APTES. The silylated phosphorylated fibers show potential flame-retardant properties with improved hydrophobicity. Furthermore, the functionalization of phosphorylated fibers with APTES changes the pH of zero charge point from 3.2 to 9.4 and providing a zwitterionic structure suitable for the simultaneous adsorption of both cationic and anionic species.</p></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0144861724007264/pdfft?md5=840ec87b25e1d08abb67654cc33a48e6&pid=1-s2.0-S0144861724007264-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Silylation of phosphorylated cellulosic fibers with an aminosilane\",\"authors\":\"\",\"doi\":\"10.1016/j.carbpol.2024.122500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, phosphorylated cellulosic fibers were functionalized with an aminosilane ((3-aminopropyl)triethoxysilane, APTES) using a simple and economical method. Several characterization were performed to determine the types of bonds between phosphorylated fibers and grafted APTES. The thermal behavior, hydrophobicity and surface charge variation as a function of pH of the multifunctional cellulose fibers were determined.</p><p>Results demonstrate that APTES should proceed through Si-O-C, and possibly Si-O-P, covalent bonds with cellulose although the dimerization of silane through Si-O-Si bonds has also been observed. The terminal amino groups are expected to be partially involved in hydrogen bonds with phosphate hydroxyl groups found at phosphorylated cellulose fiber surface, causing a pulling in the configuration of the grafted APTES. The two chemical modifications proposed in this work do not significantly modify the morphology of cellulose fibers. XRD analysis also shows that the crystal structure of the phosphorylated fibers did not change after functionalization with APTES. The silylated phosphorylated fibers show potential flame-retardant properties with improved hydrophobicity. Furthermore, the functionalization of phosphorylated fibers with APTES changes the pH of zero charge point from 3.2 to 9.4 and providing a zwitterionic structure suitable for the simultaneous adsorption of both cationic and anionic species.</p></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0144861724007264/pdfft?md5=840ec87b25e1d08abb67654cc33a48e6&pid=1-s2.0-S0144861724007264-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724007264\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724007264","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,采用一种简单而经济的方法,用氨基硅烷((3-aminopropyl)triethoxysilane, APTES)对磷化纤维素纤维进行了功能化。为了确定磷酸化纤维和接枝 APTES 之间的键的类型,对其进行了多项表征。结果表明,APTES 应通过 Si-O-C 和可能的 Si-O-P 共价键与纤维素结合,尽管也观察到硅烷通过 Si-O-Si 键进行二聚。末端氨基预计会部分参与与磷酸化纤维素纤维表面的磷酸羟基的氢键作用,从而导致接枝 APTES 的构型发生变化。这项工作中提出的两种化学改性并没有明显改变纤维素纤维的形态。XRD 分析也表明,磷化纤维的晶体结构在与 APTES 功能化后没有发生变化。硅烷化磷酸化纤维具有潜在的阻燃性能,疏水性得到改善。此外,用 APTES 对磷化纤维进行官能化后,零电荷点的 pH 值从 3.2 变为 9.4,形成了适合同时吸附阳离子和阴离子物质的齐聚物结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silylation of phosphorylated cellulosic fibers with an aminosilane

In this work, phosphorylated cellulosic fibers were functionalized with an aminosilane ((3-aminopropyl)triethoxysilane, APTES) using a simple and economical method. Several characterization were performed to determine the types of bonds between phosphorylated fibers and grafted APTES. The thermal behavior, hydrophobicity and surface charge variation as a function of pH of the multifunctional cellulose fibers were determined.

Results demonstrate that APTES should proceed through Si-O-C, and possibly Si-O-P, covalent bonds with cellulose although the dimerization of silane through Si-O-Si bonds has also been observed. The terminal amino groups are expected to be partially involved in hydrogen bonds with phosphate hydroxyl groups found at phosphorylated cellulose fiber surface, causing a pulling in the configuration of the grafted APTES. The two chemical modifications proposed in this work do not significantly modify the morphology of cellulose fibers. XRD analysis also shows that the crystal structure of the phosphorylated fibers did not change after functionalization with APTES. The silylated phosphorylated fibers show potential flame-retardant properties with improved hydrophobicity. Furthermore, the functionalization of phosphorylated fibers with APTES changes the pH of zero charge point from 3.2 to 9.4 and providing a zwitterionic structure suitable for the simultaneous adsorption of both cationic and anionic species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
期刊最新文献
Editorial Board Targeting gut microbiota by starch molecular size and chain-length distribution to produce various short-chain fatty acids Impact of waxy protein deletions on the crystalline structure and physicochemical properties of wheat V-type resistant starch (RS5) Preparation and characterization of polymeric cellulose wood adhesive with excellent bonding properties and water resistance Micellar structure of decenyl succinic anhydride modified pullulan with degree of substitution dependence in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1