自动驾驶汽车市场渗透的机制和影响:马尔科夫预测模型的启示

IF 6.3 2区 工程技术 Q1 ECONOMICS Transport Policy Pub Date : 2024-07-08 DOI:10.1016/j.tranpol.2024.07.008
Liming Zhang , Xuejiao Yao , Yao Xiao , Yingxin Zhang , Ming Cai
{"title":"自动驾驶汽车市场渗透的机制和影响:马尔科夫预测模型的启示","authors":"Liming Zhang ,&nbsp;Xuejiao Yao ,&nbsp;Yao Xiao ,&nbsp;Yingxin Zhang ,&nbsp;Ming Cai","doi":"10.1016/j.tranpol.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the rapid evolution of autonomous driving technology and the complexity of market penetration mechanisms, establishing a reliable quantitative research approach for measuring autonomous vehicle (AV) penetration and effectively validating forecasted outcomes poses significant challenges. To address this issue, this paper overcomes data limitations by starting from the perspective of Chinese automotive market. It introduces a quantifiable Markov forecasting model that establishes the link between transition probabilities and penetration influencing factors. Through a penetration network, it visually represents the correlation and evolutionary states of AVs. Building upon the model, a framework for data quantification and analysis is formed. By quantifying model indicators with market data such as car performance and historical sales, the network parameters and transition probabilities are continuously updated in real-time. This drives the model to output short-term forecasts for AV penetration in the automotive market. In addition, we devise a two-stage simulation algorithm to accomplish parameter calibration and model validation. Through validation and comparative analysis, it is observed that, compared to direct learning from historical data, our model can more accurately forecast real market penetration trends. Furthermore, sensitivity analysis experiments on market strategies indicate that, compared to technical investment, the market exhibits a higher sensitivity to price adjustments. A strategy combination of increased technical investment in high-level vehicles and judiciously raising prices proves more advantageous for intelligent transformation in the automotive sector than a singular strategy. Additionally, as the AV market evolves, the sensitivity to favorable strategies will gradually increase. Therefore, the developmental stage of the market is a crucial factor for both car companies and investors to consider. The insights gleaned from this paper offer actionable guidance for policymakers and automotive corporations in shaping future market strategies, thereby fostering the continued growth of autonomous driving technologies within the industry.</p></div>","PeriodicalId":48378,"journal":{"name":"Transport Policy","volume":"156 ","pages":"Pages 43-61"},"PeriodicalIF":6.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms and implications of autonomous vehicle market penetration: Insights from a Markov forecasting model\",\"authors\":\"Liming Zhang ,&nbsp;Xuejiao Yao ,&nbsp;Yao Xiao ,&nbsp;Yingxin Zhang ,&nbsp;Ming Cai\",\"doi\":\"10.1016/j.tranpol.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the rapid evolution of autonomous driving technology and the complexity of market penetration mechanisms, establishing a reliable quantitative research approach for measuring autonomous vehicle (AV) penetration and effectively validating forecasted outcomes poses significant challenges. To address this issue, this paper overcomes data limitations by starting from the perspective of Chinese automotive market. It introduces a quantifiable Markov forecasting model that establishes the link between transition probabilities and penetration influencing factors. Through a penetration network, it visually represents the correlation and evolutionary states of AVs. Building upon the model, a framework for data quantification and analysis is formed. By quantifying model indicators with market data such as car performance and historical sales, the network parameters and transition probabilities are continuously updated in real-time. This drives the model to output short-term forecasts for AV penetration in the automotive market. In addition, we devise a two-stage simulation algorithm to accomplish parameter calibration and model validation. Through validation and comparative analysis, it is observed that, compared to direct learning from historical data, our model can more accurately forecast real market penetration trends. Furthermore, sensitivity analysis experiments on market strategies indicate that, compared to technical investment, the market exhibits a higher sensitivity to price adjustments. A strategy combination of increased technical investment in high-level vehicles and judiciously raising prices proves more advantageous for intelligent transformation in the automotive sector than a singular strategy. Additionally, as the AV market evolves, the sensitivity to favorable strategies will gradually increase. Therefore, the developmental stage of the market is a crucial factor for both car companies and investors to consider. The insights gleaned from this paper offer actionable guidance for policymakers and automotive corporations in shaping future market strategies, thereby fostering the continued growth of autonomous driving technologies within the industry.</p></div>\",\"PeriodicalId\":48378,\"journal\":{\"name\":\"Transport Policy\",\"volume\":\"156 \",\"pages\":\"Pages 43-61\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Policy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967070X2400204X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Policy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967070X2400204X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

由于自动驾驶技术的快速发展和市场渗透机制的复杂性,建立一种可靠的定量研究方法来衡量自动驾驶汽车(AV)的渗透率并有效验证预测结果面临巨大挑战。针对这一问题,本文从中国汽车市场的角度出发,克服了数据的局限性。它引入了一个可量化的马尔可夫预测模型,建立了过渡概率与渗透率影响因素之间的联系。通过渗透率网络,该模型直观地呈现了 AV 的相关性和演化状态。在该模型的基础上,形成了一个数据量化和分析框架。通过将模型指标与汽车性能和历史销量等市场数据进行量化,网络参数和过渡概率不断得到实时更新。这推动模型输出汽车市场中 AV 渗透率的短期预测。此外,我们还设计了一种两阶段模拟算法来完成参数校准和模型验证。通过验证和对比分析,我们发现,与直接从历史数据中学习相比,我们的模型能更准确地预测真实的市场渗透趋势。此外,市场策略的敏感性分析实验表明,与技术投资相比,市场对价格调整表现出更高的敏感性。事实证明,增加对高级车辆的技术投资和明智地提高价格相结合的策略比单一策略更有利于汽车行业的智能化转型。此外,随着影音市场的发展,对有利战略的敏感度也会逐渐提高。因此,市场的发展阶段是汽车公司和投资者需要考虑的关键因素。本文的见解为政策制定者和汽车企业制定未来市场战略提供了可操作的指导,从而促进自动驾驶技术在行业内的持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms and implications of autonomous vehicle market penetration: Insights from a Markov forecasting model

Due to the rapid evolution of autonomous driving technology and the complexity of market penetration mechanisms, establishing a reliable quantitative research approach for measuring autonomous vehicle (AV) penetration and effectively validating forecasted outcomes poses significant challenges. To address this issue, this paper overcomes data limitations by starting from the perspective of Chinese automotive market. It introduces a quantifiable Markov forecasting model that establishes the link between transition probabilities and penetration influencing factors. Through a penetration network, it visually represents the correlation and evolutionary states of AVs. Building upon the model, a framework for data quantification and analysis is formed. By quantifying model indicators with market data such as car performance and historical sales, the network parameters and transition probabilities are continuously updated in real-time. This drives the model to output short-term forecasts for AV penetration in the automotive market. In addition, we devise a two-stage simulation algorithm to accomplish parameter calibration and model validation. Through validation and comparative analysis, it is observed that, compared to direct learning from historical data, our model can more accurately forecast real market penetration trends. Furthermore, sensitivity analysis experiments on market strategies indicate that, compared to technical investment, the market exhibits a higher sensitivity to price adjustments. A strategy combination of increased technical investment in high-level vehicles and judiciously raising prices proves more advantageous for intelligent transformation in the automotive sector than a singular strategy. Additionally, as the AV market evolves, the sensitivity to favorable strategies will gradually increase. Therefore, the developmental stage of the market is a crucial factor for both car companies and investors to consider. The insights gleaned from this paper offer actionable guidance for policymakers and automotive corporations in shaping future market strategies, thereby fostering the continued growth of autonomous driving technologies within the industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport Policy
Transport Policy Multiple-
CiteScore
12.10
自引率
10.30%
发文量
282
期刊介绍: Transport Policy is an international journal aimed at bridging the gap between theory and practice in transport. Its subject areas reflect the concerns of policymakers in government, industry, voluntary organisations and the public at large, providing independent, original and rigorous analysis to understand how policy decisions have been taken, monitor their effects, and suggest how they may be improved. The journal treats the transport sector comprehensively, and in the context of other sectors including energy, housing, industry and planning. All modes are covered: land, sea and air; road and rail; public and private; motorised and non-motorised; passenger and freight.
期刊最新文献
A model for speed and fuel refueling strategy of methanol dual-fuel liners with emission control areas Editorial Board Flight, aircraft, and crew integrated recovery policies for airlines - A deep reinforcement learning approach Impacts of negative congestion experiences on acceptance of tradable credits schemes: Integration of NAM and TPB Hub port location and routing for a single-hub feeder network: Effect of liner shipping network connectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1