用于绘制民丹岛浅水生态系统海草图的哨兵-2A 多光谱图像分析:直落巴考、马郎拉帕特和 Berakit 村的案例研究

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Kuwait Journal of Science Pub Date : 2024-07-08 DOI:10.1016/j.kjs.2024.100286
Pragunanti Turissa , Bisman Nababan , Vincentius P. Siregar , Dony Kushardono , Hawis H. Madduppa , Muhammad R. Nandika , Septiyan Firmansyah
{"title":"用于绘制民丹岛浅水生态系统海草图的哨兵-2A 多光谱图像分析:直落巴考、马郎拉帕特和 Berakit 村的案例研究","authors":"Pragunanti Turissa ,&nbsp;Bisman Nababan ,&nbsp;Vincentius P. Siregar ,&nbsp;Dony Kushardono ,&nbsp;Hawis H. Madduppa ,&nbsp;Muhammad R. Nandika ,&nbsp;Septiyan Firmansyah","doi":"10.1016/j.kjs.2024.100286","DOIUrl":null,"url":null,"abstract":"<div><p>Seagrasses are in danger due to anthropogenic activities causing a reduction in seagrass area and global damage. It is crucial to map seagrass distribution, as there is limited information on its existence. Sentinel-2A satellite provides high-resolution multispectral data with a 10-m resolution. The study aimed to evaluate the ability of Sentinel-2A imagery from the Google Earth Engine (GEE) platform to classify with the random forest (RF) algorithm in mapping seagrass in shallow water and various other objects in the study area. The results showed the area's presence of seagrass, coral, sand, sand seagrass, and rubble. Also, the photo transect method was used for collecting field data. The random forest algorithm had an accuracy of 76% in classifying each of the five classes. The combination of Sentinel-2A imagery and random forest algorithms can provide insight into the status and distribution of seagrass.</p></div>","PeriodicalId":17848,"journal":{"name":"Kuwait Journal of Science","volume":"51 4","pages":"Article 100286"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2307410824001111/pdfft?md5=a8305e6c5e2f95b1f488d237147e8085&pid=1-s2.0-S2307410824001111-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sentinel-2A multispectral image analysis for seagrass mapping in Bintan’s shallow water ecosystem: A case study of Teluk Bakau, Malang Rapat, and Berakit villages\",\"authors\":\"Pragunanti Turissa ,&nbsp;Bisman Nababan ,&nbsp;Vincentius P. Siregar ,&nbsp;Dony Kushardono ,&nbsp;Hawis H. Madduppa ,&nbsp;Muhammad R. Nandika ,&nbsp;Septiyan Firmansyah\",\"doi\":\"10.1016/j.kjs.2024.100286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seagrasses are in danger due to anthropogenic activities causing a reduction in seagrass area and global damage. It is crucial to map seagrass distribution, as there is limited information on its existence. Sentinel-2A satellite provides high-resolution multispectral data with a 10-m resolution. The study aimed to evaluate the ability of Sentinel-2A imagery from the Google Earth Engine (GEE) platform to classify with the random forest (RF) algorithm in mapping seagrass in shallow water and various other objects in the study area. The results showed the area's presence of seagrass, coral, sand, sand seagrass, and rubble. Also, the photo transect method was used for collecting field data. The random forest algorithm had an accuracy of 76% in classifying each of the five classes. The combination of Sentinel-2A imagery and random forest algorithms can provide insight into the status and distribution of seagrass.</p></div>\",\"PeriodicalId\":17848,\"journal\":{\"name\":\"Kuwait Journal of Science\",\"volume\":\"51 4\",\"pages\":\"Article 100286\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2307410824001111/pdfft?md5=a8305e6c5e2f95b1f488d237147e8085&pid=1-s2.0-S2307410824001111-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307410824001111\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307410824001111","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于人类活动造成海草面积减少和全球性破坏,海草正处于危险之中。由于有关海草存在的信息有限,绘制海草分布图至关重要。哨兵-2A 卫星提供分辨率为 10 米的高分辨率多光谱数据。该研究旨在评估谷歌地球引擎(GEE)平台上的哨兵-2A 图像使用随机森林(RF)算法进行分类的能力,以绘制研究区域浅水中的海草和其他各种物体的分布图。结果显示该区域存在海草、珊瑚、沙、沙海草和碎石。此外,还采用了照片横断法收集实地数据。随机森林算法对五个类别的分类准确率为 76%。将哨兵-2A 图像与随机森林算法相结合,可以深入了解海草的状况和分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentinel-2A multispectral image analysis for seagrass mapping in Bintan’s shallow water ecosystem: A case study of Teluk Bakau, Malang Rapat, and Berakit villages

Seagrasses are in danger due to anthropogenic activities causing a reduction in seagrass area and global damage. It is crucial to map seagrass distribution, as there is limited information on its existence. Sentinel-2A satellite provides high-resolution multispectral data with a 10-m resolution. The study aimed to evaluate the ability of Sentinel-2A imagery from the Google Earth Engine (GEE) platform to classify with the random forest (RF) algorithm in mapping seagrass in shallow water and various other objects in the study area. The results showed the area's presence of seagrass, coral, sand, sand seagrass, and rubble. Also, the photo transect method was used for collecting field data. The random forest algorithm had an accuracy of 76% in classifying each of the five classes. The combination of Sentinel-2A imagery and random forest algorithms can provide insight into the status and distribution of seagrass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science
Kuwait Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
28.60%
发文量
132
期刊介绍: Kuwait Journal of Science (KJS) is indexed and abstracted by major publishing houses such as Chemical Abstract, Science Citation Index, Current contents, Mathematics Abstract, Micribiological Abstracts etc. KJS publishes peer-review articles in various fields of Science including Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry and Earth & Environmental Sciences. In addition, it also aims to bring the results of scientific research carried out under a variety of intellectual traditions and organizations to the attention of specialized scholarly readership. As such, the publisher expects the submission of original manuscripts which contain analysis and solutions about important theoretical, empirical and normative issues.
期刊最新文献
Identification of Gold targets using airborne geophysics and remote sensing data in part of northcentral Nigeria Optimization of fermentation conditions for 3-methylthio-1-propanol production by Saccharomycopsis fibuligera Y1402 in tobacco matrix Bayesian estimation strategy for multi-component geometric life testing model under doubly type-1 censoring scheme In silico analysis of point mutation (c.687dupC; p. Met230Hisfs∗6) in PGAM2 gene that causes Glycogen Storage Disease (GSD) Type X Innovative synthesis and performance enhancement of yttria-stabilized zirconia nanocrystals via hydrothermal method with Uncaria gambir Roxb. leaf extract as a capping agent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1