先进的界面热量管理为电子产品带来革命性变革

Yen-Ju Wu
{"title":"先进的界面热量管理为电子产品带来革命性变革","authors":"Yen-Ju Wu","doi":"10.1038/s44287-024-00077-y","DOIUrl":null,"url":null,"abstract":"Efficient heat dissipation is crucial for electronics. Interfacial thermal resistance (ITR) poses considerable challenges that require innovative solutions. Machine learning approaches could enhance ITR predictions by analysing large datasets to guide the development of inorganic, amorphous and 2D materials for advanced thermal management in next-generation electronic devices.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 8","pages":"489-490"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing electronics with advanced interfacial heat management\",\"authors\":\"Yen-Ju Wu\",\"doi\":\"10.1038/s44287-024-00077-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient heat dissipation is crucial for electronics. Interfacial thermal resistance (ITR) poses considerable challenges that require innovative solutions. Machine learning approaches could enhance ITR predictions by analysing large datasets to guide the development of inorganic, amorphous and 2D materials for advanced thermal management in next-generation electronic devices.\",\"PeriodicalId\":501701,\"journal\":{\"name\":\"Nature Reviews Electrical Engineering\",\"volume\":\"1 8\",\"pages\":\"489-490\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44287-024-00077-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00077-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效散热对电子产品至关重要。界面热阻(ITR)带来了相当大的挑战,需要创新的解决方案。机器学习方法可通过分析大型数据集来增强 ITR 预测,从而指导无机、非晶和二维材料的开发,为下一代电子设备提供先进的热管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revolutionizing electronics with advanced interfacial heat management
Efficient heat dissipation is crucial for electronics. Interfacial thermal resistance (ITR) poses considerable challenges that require innovative solutions. Machine learning approaches could enhance ITR predictions by analysing large datasets to guide the development of inorganic, amorphous and 2D materials for advanced thermal management in next-generation electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The future of 2D spintronics Spintronics for ultra-low-power circuits and systems Spin-transfer torque magnetoresistive random access memory technology status and future directions Perpendicularly magnetized materials for energy-efficient orbitronics Spintronic neural systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1