{"title":"电解质浓度对碱性电池中 γ-MnO2 阴极充电能力的主要影响","authors":"Snehal Kolhekar, Michael Nyce and Sanjoy Banerjee","doi":"10.1149/1945-7111/ad5976","DOIUrl":null,"url":null,"abstract":"Achieving high cycle life rechargeable γ-MnO2 cathodes in alkaline batteries face many challenges. Chief among these is the inability of the γ-MnO2 polymorph to retain its structural integrity when cycled to high utilization of its theoretical capacity ∼300 mAh g−1. In this paper, we investigate the root cause of failure of MnO2 cathodes under deep cycling in the one-electron discharge range and establish a strong link between capacity fade and the amount of birnessite formed. We uncover the underlying cause of failure by cycling industrial scale γ-MnO2 cathodes at various levels of theoretical capacity utilization (100%, 50%, and 30%) and in different KOH concentrations (37, 25, and 10 wt%). To determine materials evolution the cycled cathodes were dissected, characterized and analyzed using SEM, XRD, FIB/SEM, EIS, and XPS. Based on our findings, we propose that one major cause of failure of MnO2 cathodes stems from the solubility of Mn+3 formed during discharge which effectively results in destruction of the γ-MnO2 phase and amorphization of the cathode. The results show that the bulk of the γ-MnO2 phase is preserved only in ∼10 wt% KOH, which indicates the attractive range of KOH concentration for cycling of rechargeable γ-MnO2 cathodes.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"40 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dominant Effect of Electrolyte Concentration on Rechargeability of γ-MnO2 Cathodes in Alkaline Batteries\",\"authors\":\"Snehal Kolhekar, Michael Nyce and Sanjoy Banerjee\",\"doi\":\"10.1149/1945-7111/ad5976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving high cycle life rechargeable γ-MnO2 cathodes in alkaline batteries face many challenges. Chief among these is the inability of the γ-MnO2 polymorph to retain its structural integrity when cycled to high utilization of its theoretical capacity ∼300 mAh g−1. In this paper, we investigate the root cause of failure of MnO2 cathodes under deep cycling in the one-electron discharge range and establish a strong link between capacity fade and the amount of birnessite formed. We uncover the underlying cause of failure by cycling industrial scale γ-MnO2 cathodes at various levels of theoretical capacity utilization (100%, 50%, and 30%) and in different KOH concentrations (37, 25, and 10 wt%). To determine materials evolution the cycled cathodes were dissected, characterized and analyzed using SEM, XRD, FIB/SEM, EIS, and XPS. Based on our findings, we propose that one major cause of failure of MnO2 cathodes stems from the solubility of Mn+3 formed during discharge which effectively results in destruction of the γ-MnO2 phase and amorphization of the cathode. The results show that the bulk of the γ-MnO2 phase is preserved only in ∼10 wt% KOH, which indicates the attractive range of KOH concentration for cycling of rechargeable γ-MnO2 cathodes.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad5976\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad5976","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
The Dominant Effect of Electrolyte Concentration on Rechargeability of γ-MnO2 Cathodes in Alkaline Batteries
Achieving high cycle life rechargeable γ-MnO2 cathodes in alkaline batteries face many challenges. Chief among these is the inability of the γ-MnO2 polymorph to retain its structural integrity when cycled to high utilization of its theoretical capacity ∼300 mAh g−1. In this paper, we investigate the root cause of failure of MnO2 cathodes under deep cycling in the one-electron discharge range and establish a strong link between capacity fade and the amount of birnessite formed. We uncover the underlying cause of failure by cycling industrial scale γ-MnO2 cathodes at various levels of theoretical capacity utilization (100%, 50%, and 30%) and in different KOH concentrations (37, 25, and 10 wt%). To determine materials evolution the cycled cathodes were dissected, characterized and analyzed using SEM, XRD, FIB/SEM, EIS, and XPS. Based on our findings, we propose that one major cause of failure of MnO2 cathodes stems from the solubility of Mn+3 formed during discharge which effectively results in destruction of the γ-MnO2 phase and amorphization of the cathode. The results show that the bulk of the γ-MnO2 phase is preserved only in ∼10 wt% KOH, which indicates the attractive range of KOH concentration for cycling of rechargeable γ-MnO2 cathodes.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.