主动丝从力模型的分岔和非线性动力学

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review Fluids Pub Date : 2024-07-15 DOI:10.1103/physrevfluids.9.073101
Bethany Clarke, Yongyun Hwang, Eric E. Keaveny
{"title":"主动丝从力模型的分岔和非线性动力学","authors":"Bethany Clarke, Yongyun Hwang, Eric E. Keaveny","doi":"10.1103/physrevfluids.9.073101","DOIUrl":null,"url":null,"abstract":"Biofilament-motor protein complexes are ubiquitous in biology and drive the transport of cargo vital for many fundamental life processes at the cellular level. As they move, motor proteins exert compressive forces on the filaments to which they are attached. If the filament is clamped or tethered in some way, this force leads to buckling and a subsequent range of dynamics. The follower force model, in which a single compressive force is imposed at the filament tip, is a simple filament model that is becoming widely used to describe an elastic filament, such as a microtubule, compressed by a motor protein. Depending on the force value, one can observe different states including whirling, beating, and writhing, though the bifurcations giving rise to these states are not completely understood. In this paper, we utilize techniques from computational dynamical systems to determine and characterize these bifurcations. We track emerging time-periodic branches and identify quasiperiodic states. We investigate the effect of filament slenderness on the bifurcations and, in doing so, present a comprehensive overview of the dynamics which emerge in the follower force model.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"131 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcations and nonlinear dynamics of the follower force model for active filaments\",\"authors\":\"Bethany Clarke, Yongyun Hwang, Eric E. Keaveny\",\"doi\":\"10.1103/physrevfluids.9.073101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biofilament-motor protein complexes are ubiquitous in biology and drive the transport of cargo vital for many fundamental life processes at the cellular level. As they move, motor proteins exert compressive forces on the filaments to which they are attached. If the filament is clamped or tethered in some way, this force leads to buckling and a subsequent range of dynamics. The follower force model, in which a single compressive force is imposed at the filament tip, is a simple filament model that is becoming widely used to describe an elastic filament, such as a microtubule, compressed by a motor protein. Depending on the force value, one can observe different states including whirling, beating, and writhing, though the bifurcations giving rise to these states are not completely understood. In this paper, we utilize techniques from computational dynamical systems to determine and characterize these bifurcations. We track emerging time-periodic branches and identify quasiperiodic states. We investigate the effect of filament slenderness on the bifurcations and, in doing so, present a comprehensive overview of the dynamics which emerge in the follower force model.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.073101\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.073101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

生物丝-运动蛋白复合物在生物学中无处不在,在细胞水平上驱动着对许多基本生命过程至关重要的货物运输。在运动过程中,运动蛋白会对其连接的丝施加压缩力。如果丝状物以某种方式被夹住或拴住,这种力就会导致弯曲和随后的一系列动态变化。追随者力模型是一种简单的细丝模型,它在细丝顶端施加单一的压缩力,这种模型正被广泛用于描述被运动蛋白压缩的弹性细丝(如微管)。根据力值的不同,人们可以观察到不同的状态,包括旋转、跳动和蠕动,但导致这些状态的分叉还不完全清楚。在本文中,我们利用计算动力系统的技术来确定和描述这些分岔。我们跟踪新出现的时间周期分支,并确定准周期状态。我们研究了细丝纤度对分岔的影响,并以此全面概述了随从力模型中出现的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bifurcations and nonlinear dynamics of the follower force model for active filaments
Biofilament-motor protein complexes are ubiquitous in biology and drive the transport of cargo vital for many fundamental life processes at the cellular level. As they move, motor proteins exert compressive forces on the filaments to which they are attached. If the filament is clamped or tethered in some way, this force leads to buckling and a subsequent range of dynamics. The follower force model, in which a single compressive force is imposed at the filament tip, is a simple filament model that is becoming widely used to describe an elastic filament, such as a microtubule, compressed by a motor protein. Depending on the force value, one can observe different states including whirling, beating, and writhing, though the bifurcations giving rise to these states are not completely understood. In this paper, we utilize techniques from computational dynamical systems to determine and characterize these bifurcations. We track emerging time-periodic branches and identify quasiperiodic states. We investigate the effect of filament slenderness on the bifurcations and, in doing so, present a comprehensive overview of the dynamics which emerge in the follower force model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Fluids
Physical Review Fluids Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
5.10
自引率
11.10%
发文量
488
期刊介绍: Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.
期刊最新文献
Cavitation caused by an elastic membrane deforming under the jetting of a spark-induced bubble Laboratory study of wave turbulence under isotropic forcing Waves beneath a drop levitating over a moving wall Viscosity of capsule suspensions: Effects of internal-external viscosity ratio and capsule rupture release Drainage-induced spontaneous film climbing in capillaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1