Hye-In Jung, Hangyeol Choi, Yu-Jin Song, Jung Han Kim and Yohan Yoon
{"title":"β-Ga2O3-rGO 光催化剂用于高效还原二氧化碳的协同增效和基础机理探索","authors":"Hye-In Jung, Hangyeol Choi, Yu-Jin Song, Jung Han Kim and Yohan Yoon","doi":"10.1039/D4NA00408F","DOIUrl":null,"url":null,"abstract":"<p >We explore the novel photodecomposition capabilities of β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> when augmented with reduced graphene oxide (rGO). Employing real-time spectroscopy, this study unveils the sophisticated mechanisms of photodecomposition, identifying an optimal 1 wt% β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>-rGO ratio that substantially elevates the degradation efficiency of Methylene Blue (MB). Our findings illuminate a direct relationship between the photocatalyst's composition and its performance, with the quantity of rGO synthesis notably influencing the catalyst's morphology and consequently, its photodegradation potency. The 1 wt% β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>-rGO composition stands out in its class, showing a notable 4.7-fold increase in CO production over pristine β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> and achieving CO selectivity above 98%. This remarkable performance is a testament to the significant improvements rendered by our novel rGO integration technique. Such promising results highlight the potential of our custom-designed β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>-rGO photocatalyst for critical environmental applications, representing a substantial leap forward in photocatalytic technology.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00408f?page=search","citationCount":"0","resultStr":"{\"title\":\"Synergistic augmentation and fundamental mechanistic exploration of β-Ga2O3-rGO photocatalyst for efficient CO2 reduction†\",\"authors\":\"Hye-In Jung, Hangyeol Choi, Yu-Jin Song, Jung Han Kim and Yohan Yoon\",\"doi\":\"10.1039/D4NA00408F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We explore the novel photodecomposition capabilities of β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> when augmented with reduced graphene oxide (rGO). Employing real-time spectroscopy, this study unveils the sophisticated mechanisms of photodecomposition, identifying an optimal 1 wt% β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>-rGO ratio that substantially elevates the degradation efficiency of Methylene Blue (MB). Our findings illuminate a direct relationship between the photocatalyst's composition and its performance, with the quantity of rGO synthesis notably influencing the catalyst's morphology and consequently, its photodegradation potency. The 1 wt% β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>-rGO composition stands out in its class, showing a notable 4.7-fold increase in CO production over pristine β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> and achieving CO selectivity above 98%. This remarkable performance is a testament to the significant improvements rendered by our novel rGO integration technique. Such promising results highlight the potential of our custom-designed β-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>-rGO photocatalyst for critical environmental applications, representing a substantial leap forward in photocatalytic technology.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00408f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00408f\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00408f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergistic augmentation and fundamental mechanistic exploration of β-Ga2O3-rGO photocatalyst for efficient CO2 reduction†
We explore the novel photodecomposition capabilities of β-Ga2O3 when augmented with reduced graphene oxide (rGO). Employing real-time spectroscopy, this study unveils the sophisticated mechanisms of photodecomposition, identifying an optimal 1 wt% β-Ga2O3-rGO ratio that substantially elevates the degradation efficiency of Methylene Blue (MB). Our findings illuminate a direct relationship between the photocatalyst's composition and its performance, with the quantity of rGO synthesis notably influencing the catalyst's morphology and consequently, its photodegradation potency. The 1 wt% β-Ga2O3-rGO composition stands out in its class, showing a notable 4.7-fold increase in CO production over pristine β-Ga2O3 and achieving CO selectivity above 98%. This remarkable performance is a testament to the significant improvements rendered by our novel rGO integration technique. Such promising results highlight the potential of our custom-designed β-Ga2O3-rGO photocatalyst for critical environmental applications, representing a substantial leap forward in photocatalytic technology.