{"title":"基于人工智能的多示踪剂全身 PET 联合衰减和散射校正策略。","authors":"Hao Sun, Yanchao Huang, Debin Hu, Xiaotong Hong, Yazdan Salimi, Wenbing Lv, Hongwen Chen, Habib Zaidi, Hubing Wu, Lijun Lu","doi":"10.1186/s40658-024-00666-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Low-dose ungated CT is commonly used for total-body PET attenuation and scatter correction (ASC). However, CT-based ASC (CT-ASC) is limited by radiation dose risks of CT examinations, propagation of CT-based artifacts and potential mismatches between PET and CT. We demonstrate the feasibility of direct ASC for multi-tracer total-body PET in the image domain.</p><p><strong>Methods: </strong>Clinical uEXPLORER total-body PET/CT datasets of [<sup>18</sup>F]FDG (N = 52), [<sup>18</sup>F]FAPI (N = 46) and [<sup>68</sup>Ga]FAPI (N = 60) were retrospectively enrolled in this study. We developed an improved 3D conditional generative adversarial network (cGAN) to directly estimate attenuation and scatter-corrected PET images from non-attenuation and scatter-corrected (NASC) PET images. The feasibility of the proposed 3D cGAN-based ASC was validated using four training strategies: (1) Paired 3D NASC and CT-ASC PET images from three tracers were pooled into one centralized server (CZ-ASC). (2) Paired 3D NASC and CT-ASC PET images from each tracer were individually used (DL-ASC). (3) Paired NASC and CT-ASC PET images from one tracer ([<sup>18</sup>F]FDG) were used to train the networks, while the other two tracers were used for testing without fine-tuning (NFT-ASC). (4) The pre-trained networks of (3) were fine-tuned with two other tracers individually (FT-ASC). We trained all networks in fivefold cross-validation. The performance of all ASC methods was evaluated by qualitative and quantitative metrics using CT-ASC as the reference.</p><p><strong>Results: </strong>CZ-ASC, DL-ASC and FT-ASC showed comparable visual quality with CT-ASC for all tracers. CZ-ASC and DL-ASC resulted in a normalized mean absolute error (NMAE) of 8.51 ± 7.32% versus 7.36 ± 6.77% (p < 0.05), outperforming NASC (p < 0.0001) in [<sup>18</sup>F]FDG dataset. CZ-ASC, FT-ASC and DL-ASC led to NMAE of 6.44 ± 7.02%, 6.55 ± 5.89%, and 7.25 ± 6.33% in [<sup>18</sup>F]FAPI dataset, and NMAE of 5.53 ± 3.99%, 5.60 ± 4.02%, and 5.68 ± 4.12% in [<sup>68</sup>Ga]FAPI dataset, respectively. CZ-ASC, FT-ASC and DL-ASC were superior to NASC (p < 0.0001) and NFT-ASC (p < 0.0001) in terms of NMAE results.</p><p><strong>Conclusions: </strong>CZ-ASC, DL-ASC and FT-ASC demonstrated the feasibility of providing accurate and robust ASC for multi-tracer total-body PET, thereby reducing the radiation hazards to patients from redundant CT examinations. CZ-ASC and FT-ASC could outperform DL-ASC for cross-tracer total-body PET AC.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"66"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264498/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based joint attenuation and scatter correction strategies for multi-tracer total-body PET.\",\"authors\":\"Hao Sun, Yanchao Huang, Debin Hu, Xiaotong Hong, Yazdan Salimi, Wenbing Lv, Hongwen Chen, Habib Zaidi, Hubing Wu, Lijun Lu\",\"doi\":\"10.1186/s40658-024-00666-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Low-dose ungated CT is commonly used for total-body PET attenuation and scatter correction (ASC). However, CT-based ASC (CT-ASC) is limited by radiation dose risks of CT examinations, propagation of CT-based artifacts and potential mismatches between PET and CT. We demonstrate the feasibility of direct ASC for multi-tracer total-body PET in the image domain.</p><p><strong>Methods: </strong>Clinical uEXPLORER total-body PET/CT datasets of [<sup>18</sup>F]FDG (N = 52), [<sup>18</sup>F]FAPI (N = 46) and [<sup>68</sup>Ga]FAPI (N = 60) were retrospectively enrolled in this study. We developed an improved 3D conditional generative adversarial network (cGAN) to directly estimate attenuation and scatter-corrected PET images from non-attenuation and scatter-corrected (NASC) PET images. The feasibility of the proposed 3D cGAN-based ASC was validated using four training strategies: (1) Paired 3D NASC and CT-ASC PET images from three tracers were pooled into one centralized server (CZ-ASC). (2) Paired 3D NASC and CT-ASC PET images from each tracer were individually used (DL-ASC). (3) Paired NASC and CT-ASC PET images from one tracer ([<sup>18</sup>F]FDG) were used to train the networks, while the other two tracers were used for testing without fine-tuning (NFT-ASC). (4) The pre-trained networks of (3) were fine-tuned with two other tracers individually (FT-ASC). We trained all networks in fivefold cross-validation. The performance of all ASC methods was evaluated by qualitative and quantitative metrics using CT-ASC as the reference.</p><p><strong>Results: </strong>CZ-ASC, DL-ASC and FT-ASC showed comparable visual quality with CT-ASC for all tracers. CZ-ASC and DL-ASC resulted in a normalized mean absolute error (NMAE) of 8.51 ± 7.32% versus 7.36 ± 6.77% (p < 0.05), outperforming NASC (p < 0.0001) in [<sup>18</sup>F]FDG dataset. CZ-ASC, FT-ASC and DL-ASC led to NMAE of 6.44 ± 7.02%, 6.55 ± 5.89%, and 7.25 ± 6.33% in [<sup>18</sup>F]FAPI dataset, and NMAE of 5.53 ± 3.99%, 5.60 ± 4.02%, and 5.68 ± 4.12% in [<sup>68</sup>Ga]FAPI dataset, respectively. CZ-ASC, FT-ASC and DL-ASC were superior to NASC (p < 0.0001) and NFT-ASC (p < 0.0001) in terms of NMAE results.</p><p><strong>Conclusions: </strong>CZ-ASC, DL-ASC and FT-ASC demonstrated the feasibility of providing accurate and robust ASC for multi-tracer total-body PET, thereby reducing the radiation hazards to patients from redundant CT examinations. CZ-ASC and FT-ASC could outperform DL-ASC for cross-tracer total-body PET AC.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"11 1\",\"pages\":\"66\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264498/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00666-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00666-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Artificial intelligence-based joint attenuation and scatter correction strategies for multi-tracer total-body PET.
Background: Low-dose ungated CT is commonly used for total-body PET attenuation and scatter correction (ASC). However, CT-based ASC (CT-ASC) is limited by radiation dose risks of CT examinations, propagation of CT-based artifacts and potential mismatches between PET and CT. We demonstrate the feasibility of direct ASC for multi-tracer total-body PET in the image domain.
Methods: Clinical uEXPLORER total-body PET/CT datasets of [18F]FDG (N = 52), [18F]FAPI (N = 46) and [68Ga]FAPI (N = 60) were retrospectively enrolled in this study. We developed an improved 3D conditional generative adversarial network (cGAN) to directly estimate attenuation and scatter-corrected PET images from non-attenuation and scatter-corrected (NASC) PET images. The feasibility of the proposed 3D cGAN-based ASC was validated using four training strategies: (1) Paired 3D NASC and CT-ASC PET images from three tracers were pooled into one centralized server (CZ-ASC). (2) Paired 3D NASC and CT-ASC PET images from each tracer were individually used (DL-ASC). (3) Paired NASC and CT-ASC PET images from one tracer ([18F]FDG) were used to train the networks, while the other two tracers were used for testing without fine-tuning (NFT-ASC). (4) The pre-trained networks of (3) were fine-tuned with two other tracers individually (FT-ASC). We trained all networks in fivefold cross-validation. The performance of all ASC methods was evaluated by qualitative and quantitative metrics using CT-ASC as the reference.
Results: CZ-ASC, DL-ASC and FT-ASC showed comparable visual quality with CT-ASC for all tracers. CZ-ASC and DL-ASC resulted in a normalized mean absolute error (NMAE) of 8.51 ± 7.32% versus 7.36 ± 6.77% (p < 0.05), outperforming NASC (p < 0.0001) in [18F]FDG dataset. CZ-ASC, FT-ASC and DL-ASC led to NMAE of 6.44 ± 7.02%, 6.55 ± 5.89%, and 7.25 ± 6.33% in [18F]FAPI dataset, and NMAE of 5.53 ± 3.99%, 5.60 ± 4.02%, and 5.68 ± 4.12% in [68Ga]FAPI dataset, respectively. CZ-ASC, FT-ASC and DL-ASC were superior to NASC (p < 0.0001) and NFT-ASC (p < 0.0001) in terms of NMAE results.
Conclusions: CZ-ASC, DL-ASC and FT-ASC demonstrated the feasibility of providing accurate and robust ASC for multi-tracer total-body PET, thereby reducing the radiation hazards to patients from redundant CT examinations. CZ-ASC and FT-ASC could outperform DL-ASC for cross-tracer total-body PET AC.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.