基于合成数据的铁路信号数字孪生创建大数据架构

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2024-06-11 DOI:10.1109/OJITS.2024.3412820
Giulio Salierno;Letizia Leonardi;Giacomo Cabri
{"title":"基于合成数据的铁路信号数字孪生创建大数据架构","authors":"Giulio Salierno;Letizia Leonardi;Giacomo Cabri","doi":"10.1109/OJITS.2024.3412820","DOIUrl":null,"url":null,"abstract":"Industry 5.0 has introduced new possibilities for defining key features of the factories of the future. This trend has transformed traditional industrial production by exploiting Digital Twin (DT) models as virtual representations of physical manufacturing assets. In the railway industry, Digital Twin models offer significant benefits by enabling anticipation of developments in rail systems and subsystems, providing insight into the future performance of physical assets, and allowing testing and prototyping solutions prior to implementation. This paper presents our approach for creating a Digital Twin model in the railway domain. We particularly emphasize the critical role of Big Data in supporting decision-making for railway companies and the importance of data in creating virtual representations of physical objects in railway systems. Our results show that the Digital Twin model of railway switch points, based on synthetic data, accurately represents the behavior of physical railway switches in terms of data points.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"1-18"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554659","citationCount":"0","resultStr":"{\"title\":\"A Big Data Architecture for Digital Twin Creation of Railway Signals Based on Synthetic Data\",\"authors\":\"Giulio Salierno;Letizia Leonardi;Giacomo Cabri\",\"doi\":\"10.1109/OJITS.2024.3412820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industry 5.0 has introduced new possibilities for defining key features of the factories of the future. This trend has transformed traditional industrial production by exploiting Digital Twin (DT) models as virtual representations of physical manufacturing assets. In the railway industry, Digital Twin models offer significant benefits by enabling anticipation of developments in rail systems and subsystems, providing insight into the future performance of physical assets, and allowing testing and prototyping solutions prior to implementation. This paper presents our approach for creating a Digital Twin model in the railway domain. We particularly emphasize the critical role of Big Data in supporting decision-making for railway companies and the importance of data in creating virtual representations of physical objects in railway systems. Our results show that the Digital Twin model of railway switch points, based on synthetic data, accurately represents the behavior of physical railway switches in terms of data points.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"5 \",\"pages\":\"1-18\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554659\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10554659/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10554659/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

工业 5.0 为定义未来工厂的关键特征带来了新的可能性。这一趋势通过利用数字孪生(DT)模型作为实体制造资产的虚拟代表,改变了传统的工业生产。在铁路行业,数字孪生模型通过预测铁路系统和子系统的发展、洞察物理资产的未来性能以及在实施前测试和原型化解决方案,提供了显著的优势。本文介绍了我们在铁路领域创建数字孪生模型的方法。我们特别强调了大数据在支持铁路公司决策方面的关键作用,以及数据在创建铁路系统中物理对象的虚拟表征方面的重要性。我们的研究结果表明,基于合成数据的铁路开关点数字孪生模型能够准确地以数据点的形式表现物理铁路开关的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Big Data Architecture for Digital Twin Creation of Railway Signals Based on Synthetic Data
Industry 5.0 has introduced new possibilities for defining key features of the factories of the future. This trend has transformed traditional industrial production by exploiting Digital Twin (DT) models as virtual representations of physical manufacturing assets. In the railway industry, Digital Twin models offer significant benefits by enabling anticipation of developments in rail systems and subsystems, providing insight into the future performance of physical assets, and allowing testing and prototyping solutions prior to implementation. This paper presents our approach for creating a Digital Twin model in the railway domain. We particularly emphasize the critical role of Big Data in supporting decision-making for railway companies and the importance of data in creating virtual representations of physical objects in railway systems. Our results show that the Digital Twin model of railway switch points, based on synthetic data, accurately represents the behavior of physical railway switches in terms of data points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Vehicle Egomotion Estimation Through IMU-RADAR Tight-Coupling An Adaptive Hierarchical Framework With Contrastive Aggregation for Traffic Sign Classification TruckSentry: Context Aware Intrusion Detection and Prevention System for J1939 Networks VI-BEV: Vehicle-Infrastructure Collaborative Perception for 3-D Object Detection on Bird’s-Eye View Beat the Morning Rush: Survival Analysis-Informed DNNs With Collaborative Filtering to Predict Departure Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1