Tieu-Long Phan, Klaus Weinbauer, Thomas Gärtner, Daniel Merkle, Jakob L. Andersen, Rolf Fagerberg, Peter F. Stadler
{"title":"反应再平衡:整理反应数据库的新方法。","authors":"Tieu-Long Phan, Klaus Weinbauer, Thomas Gärtner, Daniel Merkle, Jakob L. Andersen, Rolf Fagerberg, Peter F. Stadler","doi":"10.1186/s13321-024-00875-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Reaction databases are a key resource for a wide variety of applications in computational chemistry and biochemistry, including Computer-aided Synthesis Planning (CASP) and the large-scale analysis of metabolic networks. The full potential of these resources can only be realized if datasets are accurate and complete. Missing co-reactants and co-products, i.e., unbalanced reactions, however, are the rule rather than the exception. The curation and correction of such incomplete entries is thus an urgent need.</p><h3>Methods</h3><p>The <span>SynRBL</span> framework addresses this issue with a dual-strategy: a rule-based method for non-carbon compounds, using atomic symbols and counts for prediction, alongside a Maximum Common Subgraph (MCS)-based technique for carbon compounds, aimed at aligning reactants and products to infer missing entities.</p><h3>Results</h3><p>The rule-based method exceeded 99% accuracy, while MCS-based accuracy varied from 81.19 to 99.33%, depending on reaction properties. Furthermore, an applicability domain and a machine learning scoring function were devised to quantify prediction confidence. The overall efficacy of this framework was delineated through its success rate and accuracy metrics, which spanned from 89.83 to 99.75% and 90.85 to 99.05%, respectively.</p><h3>Conclusion</h3><p>The <span>SynRBL</span> framework offers a novel solution for recalibrating chemical reactions, significantly enhancing reaction completeness. With rigorous validation, it achieved groundbreaking accuracy in reaction rebalancing. This sets the stage for future improvement in particular of atom-atom mapping techniques as well as of downstream tasks such as automated synthesis planning.</p><h3>Scientific Contribution</h3><p><span>SynRBL</span> features a novel computational approach to correcting unbalanced entries in chemical reaction databases. By combining heuristic rules for inferring non-carbon compounds and common subgraph searches to address carbon unbalance, <span>SynRBL</span> successfully addresses most instances of this problem, which affects the majority of data in most large-scale resources. Compared to alternative solutions, <span>SynRBL</span> achieves a dramatic increase in both success rate and accurary, and provides the first freely available open source solution for this problem.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00875-4","citationCount":"0","resultStr":"{\"title\":\"Reaction rebalancing: a novel approach to curating reaction databases\",\"authors\":\"Tieu-Long Phan, Klaus Weinbauer, Thomas Gärtner, Daniel Merkle, Jakob L. Andersen, Rolf Fagerberg, Peter F. Stadler\",\"doi\":\"10.1186/s13321-024-00875-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Reaction databases are a key resource for a wide variety of applications in computational chemistry and biochemistry, including Computer-aided Synthesis Planning (CASP) and the large-scale analysis of metabolic networks. The full potential of these resources can only be realized if datasets are accurate and complete. Missing co-reactants and co-products, i.e., unbalanced reactions, however, are the rule rather than the exception. The curation and correction of such incomplete entries is thus an urgent need.</p><h3>Methods</h3><p>The <span>SynRBL</span> framework addresses this issue with a dual-strategy: a rule-based method for non-carbon compounds, using atomic symbols and counts for prediction, alongside a Maximum Common Subgraph (MCS)-based technique for carbon compounds, aimed at aligning reactants and products to infer missing entities.</p><h3>Results</h3><p>The rule-based method exceeded 99% accuracy, while MCS-based accuracy varied from 81.19 to 99.33%, depending on reaction properties. Furthermore, an applicability domain and a machine learning scoring function were devised to quantify prediction confidence. The overall efficacy of this framework was delineated through its success rate and accuracy metrics, which spanned from 89.83 to 99.75% and 90.85 to 99.05%, respectively.</p><h3>Conclusion</h3><p>The <span>SynRBL</span> framework offers a novel solution for recalibrating chemical reactions, significantly enhancing reaction completeness. With rigorous validation, it achieved groundbreaking accuracy in reaction rebalancing. This sets the stage for future improvement in particular of atom-atom mapping techniques as well as of downstream tasks such as automated synthesis planning.</p><h3>Scientific Contribution</h3><p><span>SynRBL</span> features a novel computational approach to correcting unbalanced entries in chemical reaction databases. By combining heuristic rules for inferring non-carbon compounds and common subgraph searches to address carbon unbalance, <span>SynRBL</span> successfully addresses most instances of this problem, which affects the majority of data in most large-scale resources. Compared to alternative solutions, <span>SynRBL</span> achieves a dramatic increase in both success rate and accurary, and provides the first freely available open source solution for this problem.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00875-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00875-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00875-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reaction rebalancing: a novel approach to curating reaction databases
Purpose
Reaction databases are a key resource for a wide variety of applications in computational chemistry and biochemistry, including Computer-aided Synthesis Planning (CASP) and the large-scale analysis of metabolic networks. The full potential of these resources can only be realized if datasets are accurate and complete. Missing co-reactants and co-products, i.e., unbalanced reactions, however, are the rule rather than the exception. The curation and correction of such incomplete entries is thus an urgent need.
Methods
The SynRBL framework addresses this issue with a dual-strategy: a rule-based method for non-carbon compounds, using atomic symbols and counts for prediction, alongside a Maximum Common Subgraph (MCS)-based technique for carbon compounds, aimed at aligning reactants and products to infer missing entities.
Results
The rule-based method exceeded 99% accuracy, while MCS-based accuracy varied from 81.19 to 99.33%, depending on reaction properties. Furthermore, an applicability domain and a machine learning scoring function were devised to quantify prediction confidence. The overall efficacy of this framework was delineated through its success rate and accuracy metrics, which spanned from 89.83 to 99.75% and 90.85 to 99.05%, respectively.
Conclusion
The SynRBL framework offers a novel solution for recalibrating chemical reactions, significantly enhancing reaction completeness. With rigorous validation, it achieved groundbreaking accuracy in reaction rebalancing. This sets the stage for future improvement in particular of atom-atom mapping techniques as well as of downstream tasks such as automated synthesis planning.
Scientific Contribution
SynRBL features a novel computational approach to correcting unbalanced entries in chemical reaction databases. By combining heuristic rules for inferring non-carbon compounds and common subgraph searches to address carbon unbalance, SynRBL successfully addresses most instances of this problem, which affects the majority of data in most large-scale resources. Compared to alternative solutions, SynRBL achieves a dramatic increase in both success rate and accurary, and provides the first freely available open source solution for this problem.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.