{"title":"通过对疑似胸廓出口综合征转诊患者同时进行动脉和静脉光电肌电图检查,估算孤立腕骨间压迫的发生率。","authors":"Simon Lecoq, Jeanne Hersant, Pierre Abraham","doi":"10.1088/1361-6579/ad65b1","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>In patients with suspected thoracic outlet syndrome (TOS), diagnosing inter-scalene compression could lead to minimally invasive treatments. During photo-plethysmography, completing a 30 s 90° abduction, external rotation ('surrender' position) by addition of a 15 s 90° antepulsion 'prayer' position, allows quantitative bilateral analysis of both arterial (A-PPG) and venous (V-PPG) results. We aimed at determining the proportion of isolated arterial compression with photo-plethysmography in TOS-suspected patients.<i>Approach.</i>We studied 116 subjects recruited over 4 months (43.3 ± 11.8 years old, 69% females). Fingertip A-PPG and forearm V-PPG were recorded on both sides at 125 Hz and 4 Hz respectively. A-PPG was converted to PPG amplitude and expressed as percentage of resting amplitude (% rest). V-PPG was expressed as percentage of the maximal value (% max) observed during the 'Surrender-Prayer' maneuver. Impairment of arterial inflow during the surrender (As+) or prayer (Ap+) phases were defined as a pulse-amplitude either <5% rest, or <25% rest. Incomplete venous emptying during the surrender (Vs+) or prayer (Vp+) phases were defined as V-PPG values either <70% max, or <87% max.<i>Main results.</i>Of the 16 possible associations of encodings, As - Vs - Ap - Vp- was the most frequent observation assumed to be a normal response. Isolated arterial inflow without venous outflow (As + Vs-) impairment in the surrender position was observed in 10.3% (95%CI: 6.7%-15.0%) to 15.1% (95%CI: 10.7%-20.4%) of limbs.<i>Significance.</i>Simultaneous A-PPG and V-PPG can discriminate arterial from venous compression and then potentially inter-scalene from other levels of compressions. As such, it opens new perspectives in evaluation and treatment of TOS.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of the prevalence of isolated inter-scalene compression from simultaneous arterial and venous photoplethysmography in patients referred for suspected thoracic outlet syndrome.\",\"authors\":\"Simon Lecoq, Jeanne Hersant, Pierre Abraham\",\"doi\":\"10.1088/1361-6579/ad65b1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>In patients with suspected thoracic outlet syndrome (TOS), diagnosing inter-scalene compression could lead to minimally invasive treatments. During photo-plethysmography, completing a 30 s 90° abduction, external rotation ('surrender' position) by addition of a 15 s 90° antepulsion 'prayer' position, allows quantitative bilateral analysis of both arterial (A-PPG) and venous (V-PPG) results. We aimed at determining the proportion of isolated arterial compression with photo-plethysmography in TOS-suspected patients.<i>Approach.</i>We studied 116 subjects recruited over 4 months (43.3 ± 11.8 years old, 69% females). Fingertip A-PPG and forearm V-PPG were recorded on both sides at 125 Hz and 4 Hz respectively. A-PPG was converted to PPG amplitude and expressed as percentage of resting amplitude (% rest). V-PPG was expressed as percentage of the maximal value (% max) observed during the 'Surrender-Prayer' maneuver. Impairment of arterial inflow during the surrender (As+) or prayer (Ap+) phases were defined as a pulse-amplitude either <5% rest, or <25% rest. Incomplete venous emptying during the surrender (Vs+) or prayer (Vp+) phases were defined as V-PPG values either <70% max, or <87% max.<i>Main results.</i>Of the 16 possible associations of encodings, As - Vs - Ap - Vp- was the most frequent observation assumed to be a normal response. Isolated arterial inflow without venous outflow (As + Vs-) impairment in the surrender position was observed in 10.3% (95%CI: 6.7%-15.0%) to 15.1% (95%CI: 10.7%-20.4%) of limbs.<i>Significance.</i>Simultaneous A-PPG and V-PPG can discriminate arterial from venous compression and then potentially inter-scalene from other levels of compressions. As such, it opens new perspectives in evaluation and treatment of TOS.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad65b1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad65b1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Estimation of the prevalence of isolated inter-scalene compression from simultaneous arterial and venous photoplethysmography in patients referred for suspected thoracic outlet syndrome.
Objective.In patients with suspected thoracic outlet syndrome (TOS), diagnosing inter-scalene compression could lead to minimally invasive treatments. During photo-plethysmography, completing a 30 s 90° abduction, external rotation ('surrender' position) by addition of a 15 s 90° antepulsion 'prayer' position, allows quantitative bilateral analysis of both arterial (A-PPG) and venous (V-PPG) results. We aimed at determining the proportion of isolated arterial compression with photo-plethysmography in TOS-suspected patients.Approach.We studied 116 subjects recruited over 4 months (43.3 ± 11.8 years old, 69% females). Fingertip A-PPG and forearm V-PPG were recorded on both sides at 125 Hz and 4 Hz respectively. A-PPG was converted to PPG amplitude and expressed as percentage of resting amplitude (% rest). V-PPG was expressed as percentage of the maximal value (% max) observed during the 'Surrender-Prayer' maneuver. Impairment of arterial inflow during the surrender (As+) or prayer (Ap+) phases were defined as a pulse-amplitude either <5% rest, or <25% rest. Incomplete venous emptying during the surrender (Vs+) or prayer (Vp+) phases were defined as V-PPG values either <70% max, or <87% max.Main results.Of the 16 possible associations of encodings, As - Vs - Ap - Vp- was the most frequent observation assumed to be a normal response. Isolated arterial inflow without venous outflow (As + Vs-) impairment in the surrender position was observed in 10.3% (95%CI: 6.7%-15.0%) to 15.1% (95%CI: 10.7%-20.4%) of limbs.Significance.Simultaneous A-PPG and V-PPG can discriminate arterial from venous compression and then potentially inter-scalene from other levels of compressions. As such, it opens new perspectives in evaluation and treatment of TOS.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.