{"title":"一般协方差结构下的高维广义线性模型试验","authors":"Weichao Yang , Xu Guo , Lixing Zhu","doi":"10.1016/j.csda.2024.108026","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the testing of regression coefficients within high-dimensional generalized linear models featuring general covariance structures. The derived asymptotic properties reveal that distinct covariance structures can lead to varying limiting null distributions, including the normal distribution, for a widely employed quadratic-norm based test statistic. This circumstance renders it infeasible to determine critical values through a limiting null distribution. In response to this challenge, we propose a multiplier bootstrap test procedure for practical implementation. Additionally, we introduce a modified version of this procedure, incorporating projection when dealing with nuisance parameters. We then proceed to examine the asymptotic level and power of the proposed tests and assess their finite-sample performance through simulations. Finally, we present a real data analysis to illustrate the practical application of the proposed tests.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tests for high-dimensional generalized linear models under general covariance structure\",\"authors\":\"Weichao Yang , Xu Guo , Lixing Zhu\",\"doi\":\"10.1016/j.csda.2024.108026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the testing of regression coefficients within high-dimensional generalized linear models featuring general covariance structures. The derived asymptotic properties reveal that distinct covariance structures can lead to varying limiting null distributions, including the normal distribution, for a widely employed quadratic-norm based test statistic. This circumstance renders it infeasible to determine critical values through a limiting null distribution. In response to this challenge, we propose a multiplier bootstrap test procedure for practical implementation. Additionally, we introduce a modified version of this procedure, incorporating projection when dealing with nuisance parameters. We then proceed to examine the asymptotic level and power of the proposed tests and assess their finite-sample performance through simulations. Finally, we present a real data analysis to illustrate the practical application of the proposed tests.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001105\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001105","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tests for high-dimensional generalized linear models under general covariance structure
This study investigates the testing of regression coefficients within high-dimensional generalized linear models featuring general covariance structures. The derived asymptotic properties reveal that distinct covariance structures can lead to varying limiting null distributions, including the normal distribution, for a widely employed quadratic-norm based test statistic. This circumstance renders it infeasible to determine critical values through a limiting null distribution. In response to this challenge, we propose a multiplier bootstrap test procedure for practical implementation. Additionally, we introduce a modified version of this procedure, incorporating projection when dealing with nuisance parameters. We then proceed to examine the asymptotic level and power of the proposed tests and assess their finite-sample performance through simulations. Finally, we present a real data analysis to illustrate the practical application of the proposed tests.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.