基于羟丙基纤维素的可调热致伸缩水凝胶传感器,用于人体运动/健康检测、视觉信号传输和信息加密

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED Carbohydrate Polymers Pub Date : 2024-07-17 DOI:10.1016/j.carbpol.2024.122497
{"title":"基于羟丙基纤维素的可调热致伸缩水凝胶传感器,用于人体运动/健康检测、视觉信号传输和信息加密","authors":"","doi":"10.1016/j.carbpol.2024.122497","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoresponsive hydrogels can be used as smart flexible sensors. However, the design and facile preparation of multifunctional thermoresponsive hydrogel sensors still face great challenges. Herein, a tunable thermoresponsive, thermochromic and stretchable poly(2-hydroxypropyl acrylate-<em>co</em>-acrylamide) (P(HPA-<em>co</em>-AM))/hydroxypropyl cellulose (HPC)/lithium chloride (LiCl) hydrogel with the networks constructed from non-covalent interaction was fabricated by photopolymerization. PHPA exhibits excellent thermoresponsiveness. HPC endows the hydrogel with outstanding mechanical performance and enhanced temperature-sensitivity. LiCl not only provides good conductivity, but also regulates the lower critical solution temperature (LCST) of the hydrogel. The hydrogel shows tensile strength up to 300 kPa and maximum strain up to 790 %. The LCST value of the hydrogel can be adjusted from 38 to 75 °C. Therefore, the thermoresponsive conductive hydrogel can realize the information encryption, and be used as sensor through strain and temperature changes in the external environment to realize the motion and health detection, and visual signal transmission. This work is expected to provide ideas for the next generation of smart multifunctional electronic skin and information encryption device.</p></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable thermoresponsive and stretchable hydrogel sensor based on hydroxypropyl cellulose for human motion/health detection, visual signal transmission and information encryption\",\"authors\":\"\",\"doi\":\"10.1016/j.carbpol.2024.122497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermoresponsive hydrogels can be used as smart flexible sensors. However, the design and facile preparation of multifunctional thermoresponsive hydrogel sensors still face great challenges. Herein, a tunable thermoresponsive, thermochromic and stretchable poly(2-hydroxypropyl acrylate-<em>co</em>-acrylamide) (P(HPA-<em>co</em>-AM))/hydroxypropyl cellulose (HPC)/lithium chloride (LiCl) hydrogel with the networks constructed from non-covalent interaction was fabricated by photopolymerization. PHPA exhibits excellent thermoresponsiveness. HPC endows the hydrogel with outstanding mechanical performance and enhanced temperature-sensitivity. LiCl not only provides good conductivity, but also regulates the lower critical solution temperature (LCST) of the hydrogel. The hydrogel shows tensile strength up to 300 kPa and maximum strain up to 790 %. The LCST value of the hydrogel can be adjusted from 38 to 75 °C. Therefore, the thermoresponsive conductive hydrogel can realize the information encryption, and be used as sensor through strain and temperature changes in the external environment to realize the motion and health detection, and visual signal transmission. This work is expected to provide ideas for the next generation of smart multifunctional electronic skin and information encryption device.</p></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724007239\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724007239","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

热致伸缩水凝胶可用作智能柔性传感器。然而,多功能热致伸缩性水凝胶传感器的设计和简便制备仍面临巨大挑战。本文通过光聚合法制备了一种具有可调热致伸缩性、热致变色性和可拉伸性的聚(2-羟丙基丙烯酸酯-共丙烯酰胺)(P(HPA-co-AM))/羟丙基纤维素(HPC)/氯化锂(LiCl)水凝胶,其网络由非共价作用构建而成。PHPA 表现出卓越的热响应性。HPC 使水凝胶具有出色的机械性能和更高的温度敏感性。氯化锂不仅具有良好的导电性,还能调节水凝胶的较低临界溶液温度(LCST)。水凝胶的拉伸强度可达 300 kPa,最大应变可达 790%。水凝胶的 LCST 值可在 38 至 75 °C 之间调节。因此,热致伸缩导电水凝胶可以实现信息加密,并通过外部环境的应变和温度变化用作传感器,实现运动和健康检测以及视觉信号传输。这项工作有望为下一代智能多功能电子皮肤和信息加密装置提供思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tunable thermoresponsive and stretchable hydrogel sensor based on hydroxypropyl cellulose for human motion/health detection, visual signal transmission and information encryption

Thermoresponsive hydrogels can be used as smart flexible sensors. However, the design and facile preparation of multifunctional thermoresponsive hydrogel sensors still face great challenges. Herein, a tunable thermoresponsive, thermochromic and stretchable poly(2-hydroxypropyl acrylate-co-acrylamide) (P(HPA-co-AM))/hydroxypropyl cellulose (HPC)/lithium chloride (LiCl) hydrogel with the networks constructed from non-covalent interaction was fabricated by photopolymerization. PHPA exhibits excellent thermoresponsiveness. HPC endows the hydrogel with outstanding mechanical performance and enhanced temperature-sensitivity. LiCl not only provides good conductivity, but also regulates the lower critical solution temperature (LCST) of the hydrogel. The hydrogel shows tensile strength up to 300 kPa and maximum strain up to 790 %. The LCST value of the hydrogel can be adjusted from 38 to 75 °C. Therefore, the thermoresponsive conductive hydrogel can realize the information encryption, and be used as sensor through strain and temperature changes in the external environment to realize the motion and health detection, and visual signal transmission. This work is expected to provide ideas for the next generation of smart multifunctional electronic skin and information encryption device.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
期刊最新文献
Editorial Board Targeting gut microbiota by starch molecular size and chain-length distribution to produce various short-chain fatty acids Impact of waxy protein deletions on the crystalline structure and physicochemical properties of wheat V-type resistant starch (RS5) Preparation and characterization of polymeric cellulose wood adhesive with excellent bonding properties and water resistance Micellar structure of decenyl succinic anhydride modified pullulan with degree of substitution dependence in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1