Shan Liu, Xue Li, Li Gan, Sutong Liu, Hongzhi Luo, Xiaoxin Du, Samah A. Loutfy, Hong Tan, Jinhong Guo, Chenzhong Li
{"title":"碳基植入式生物电子学","authors":"Shan Liu, Xue Li, Li Gan, Sutong Liu, Hongzhi Luo, Xiaoxin Du, Samah A. Loutfy, Hong Tan, Jinhong Guo, Chenzhong Li","doi":"10.1063/5.0160168","DOIUrl":null,"url":null,"abstract":"Real-time health monitoring and precision treatment are important in the biomedical field. Researchers have focused on unique gadgets with peculiar functions, which have emerged from the merging of electronic components with biological systems. Because implantable bioelectronics can sense bodily information or elicit bodily reactions in living creatures from sites outside the body, they are becoming helpful and promising remedies for a variety of ailments. Carbon materials are more suitable than other materials for the manufacture of implantable medical electronics due to their excellent biocompatibility, fatigue resistance, and low specific gravity. Therefore, carbon materials can apply to a wide range of implantable drug delivery devices, biosensors, therapeutic stimulators, and energy storage and play irreplaceable roles in neurological, cardiovascular, gastrointestinal, and locomotor systems, among others. This review aims to offer researchers insight into carbon-based implantable bioelectronics in the biomedical field. Initially, various types of carbon materials were introduced. Subsequently, it delves into carbon-based implantable bioelectronics from four perspectives: implantable actuators, biosensors, drug delivery systems, and power supplies. Furthermore, we anticipate the future direction and potential applications of carbon-based implantable bioelectronics. Given the evolving field of nanotechnology and bioelectronics, we are optimistic that these devices will foster significant breakthroughs and innovations in the biomedical sector. Ultimately, this review aims to assist researchers in navigating the choices and directions of carbon-based implantable bioelectronics, thereby promoting the advancement of the biomedical field and contributing positively to the health and welfare of humankind.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"16 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon-based implantable bioelectronics\",\"authors\":\"Shan Liu, Xue Li, Li Gan, Sutong Liu, Hongzhi Luo, Xiaoxin Du, Samah A. Loutfy, Hong Tan, Jinhong Guo, Chenzhong Li\",\"doi\":\"10.1063/5.0160168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time health monitoring and precision treatment are important in the biomedical field. Researchers have focused on unique gadgets with peculiar functions, which have emerged from the merging of electronic components with biological systems. Because implantable bioelectronics can sense bodily information or elicit bodily reactions in living creatures from sites outside the body, they are becoming helpful and promising remedies for a variety of ailments. Carbon materials are more suitable than other materials for the manufacture of implantable medical electronics due to their excellent biocompatibility, fatigue resistance, and low specific gravity. Therefore, carbon materials can apply to a wide range of implantable drug delivery devices, biosensors, therapeutic stimulators, and energy storage and play irreplaceable roles in neurological, cardiovascular, gastrointestinal, and locomotor systems, among others. This review aims to offer researchers insight into carbon-based implantable bioelectronics in the biomedical field. Initially, various types of carbon materials were introduced. Subsequently, it delves into carbon-based implantable bioelectronics from four perspectives: implantable actuators, biosensors, drug delivery systems, and power supplies. Furthermore, we anticipate the future direction and potential applications of carbon-based implantable bioelectronics. Given the evolving field of nanotechnology and bioelectronics, we are optimistic that these devices will foster significant breakthroughs and innovations in the biomedical sector. Ultimately, this review aims to assist researchers in navigating the choices and directions of carbon-based implantable bioelectronics, thereby promoting the advancement of the biomedical field and contributing positively to the health and welfare of humankind.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0160168\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0160168","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Real-time health monitoring and precision treatment are important in the biomedical field. Researchers have focused on unique gadgets with peculiar functions, which have emerged from the merging of electronic components with biological systems. Because implantable bioelectronics can sense bodily information or elicit bodily reactions in living creatures from sites outside the body, they are becoming helpful and promising remedies for a variety of ailments. Carbon materials are more suitable than other materials for the manufacture of implantable medical electronics due to their excellent biocompatibility, fatigue resistance, and low specific gravity. Therefore, carbon materials can apply to a wide range of implantable drug delivery devices, biosensors, therapeutic stimulators, and energy storage and play irreplaceable roles in neurological, cardiovascular, gastrointestinal, and locomotor systems, among others. This review aims to offer researchers insight into carbon-based implantable bioelectronics in the biomedical field. Initially, various types of carbon materials were introduced. Subsequently, it delves into carbon-based implantable bioelectronics from four perspectives: implantable actuators, biosensors, drug delivery systems, and power supplies. Furthermore, we anticipate the future direction and potential applications of carbon-based implantable bioelectronics. Given the evolving field of nanotechnology and bioelectronics, we are optimistic that these devices will foster significant breakthroughs and innovations in the biomedical sector. Ultimately, this review aims to assist researchers in navigating the choices and directions of carbon-based implantable bioelectronics, thereby promoting the advancement of the biomedical field and contributing positively to the health and welfare of humankind.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.