Sebastian J. Ross, Gareth R. Owen, James Hough, Annelies Philips, Wendy Maddelein, John Ray, Peter M. Kilby, Mark J. Dickman
{"title":"利用多种转录终止子优化微生物系统中 dsRNA 生物控制的生产","authors":"Sebastian J. Ross, Gareth R. Owen, James Hough, Annelies Philips, Wendy Maddelein, John Ray, Peter M. Kilby, Mark J. Dickman","doi":"10.1002/bit.28805","DOIUrl":null,"url":null,"abstract":"<p>Crop pests and pathogens annually cause over $220 billion in global crop damage, with insects consuming 5%–20% of major grain crops. Current crop pest and disease control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes, and agricultural practices. Double-stranded RNA (dsRNA) is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. Successful commercialization of dsRNA-based biocontrols requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. In this study, we have optimized the design of plasmid DNA constructs to produce dsRNA biocontrols in <i>Escherichia coli</i>, by employing a wide range of alternative synthetic transcriptional terminators before measurement of dsRNA yield. We demonstrate that a 7.8-fold increase of dsRNA was achieved using triple synthetic transcriptional terminators within a dual T7 dsRNA production system compared to the absence of transcriptional terminators. Moreover, our data demonstrate that batch fermentation production dsRNA using multiple transcriptional terminators is scalable and generates significantly higher yields of dsRNA generated in the absence of transcriptional terminators at both small-scale batch culture and large-scale fermentation. In addition, we show that application of these dsRNA biocontrols expressed in <i>E. coli</i> cells results in increased insect mortality. Finally, novel mass spectrometry analysis was performed to determine the precise sites of transcriptional termination at the different transcriptional terminators providing important further mechanistic insight.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 11","pages":"3582-3599"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28805","citationCount":"0","resultStr":"{\"title\":\"Optimizing the production of dsRNA biocontrols in microbial systems using multiple transcriptional terminators\",\"authors\":\"Sebastian J. Ross, Gareth R. Owen, James Hough, Annelies Philips, Wendy Maddelein, John Ray, Peter M. Kilby, Mark J. Dickman\",\"doi\":\"10.1002/bit.28805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crop pests and pathogens annually cause over $220 billion in global crop damage, with insects consuming 5%–20% of major grain crops. Current crop pest and disease control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes, and agricultural practices. Double-stranded RNA (dsRNA) is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. Successful commercialization of dsRNA-based biocontrols requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. In this study, we have optimized the design of plasmid DNA constructs to produce dsRNA biocontrols in <i>Escherichia coli</i>, by employing a wide range of alternative synthetic transcriptional terminators before measurement of dsRNA yield. We demonstrate that a 7.8-fold increase of dsRNA was achieved using triple synthetic transcriptional terminators within a dual T7 dsRNA production system compared to the absence of transcriptional terminators. Moreover, our data demonstrate that batch fermentation production dsRNA using multiple transcriptional terminators is scalable and generates significantly higher yields of dsRNA generated in the absence of transcriptional terminators at both small-scale batch culture and large-scale fermentation. In addition, we show that application of these dsRNA biocontrols expressed in <i>E. coli</i> cells results in increased insect mortality. Finally, novel mass spectrometry analysis was performed to determine the precise sites of transcriptional termination at the different transcriptional terminators providing important further mechanistic insight.</p>\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"121 11\",\"pages\":\"3582-3599\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28805\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bit.28805\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28805","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Optimizing the production of dsRNA biocontrols in microbial systems using multiple transcriptional terminators
Crop pests and pathogens annually cause over $220 billion in global crop damage, with insects consuming 5%–20% of major grain crops. Current crop pest and disease control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes, and agricultural practices. Double-stranded RNA (dsRNA) is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. Successful commercialization of dsRNA-based biocontrols requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. In this study, we have optimized the design of plasmid DNA constructs to produce dsRNA biocontrols in Escherichia coli, by employing a wide range of alternative synthetic transcriptional terminators before measurement of dsRNA yield. We demonstrate that a 7.8-fold increase of dsRNA was achieved using triple synthetic transcriptional terminators within a dual T7 dsRNA production system compared to the absence of transcriptional terminators. Moreover, our data demonstrate that batch fermentation production dsRNA using multiple transcriptional terminators is scalable and generates significantly higher yields of dsRNA generated in the absence of transcriptional terminators at both small-scale batch culture and large-scale fermentation. In addition, we show that application of these dsRNA biocontrols expressed in E. coli cells results in increased insect mortality. Finally, novel mass spectrometry analysis was performed to determine the precise sites of transcriptional termination at the different transcriptional terminators providing important further mechanistic insight.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.